These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8494804)

  • 1. Neuromodulation of pigment movement in the RPE of normal and 6-OHDA-lesioned goldfish retinas.
    Ball AK; Baldridge WH; Fernback TC
    Vis Neurosci; 1993; 10(3):529-40. PubMed ID: 8494804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium.
    Dearry A; Burnside B
    J Neurochem; 1989 Sep; 53(3):870-8. PubMed ID: 2547905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.
    Dearry A; Edelman JL; Miller S; Burnside B
    J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap junction particle density of horizontal cells in goldfish retinas lesioned with 6-OHDA.
    Baldridge WH; Ball AK; Miller RG
    J Comp Neurol; 1989 Sep; 287(2):238-46. PubMed ID: 2507595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of distinct D2 dopaminergic and alpha 2-adrenergic receptors induces light-adaptive pigment dispersion in teleost retinal pigment epithelium.
    Dearry A; Burnside B
    J Neurochem; 1988 Nov; 51(5):1516-23. PubMed ID: 2844995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Background illumination reduces horizontal cell receptive-field size in both normal and 6-hydroxydopamine-lesioned goldfish retinas.
    Baldridge WH; Ball AK
    Vis Neurosci; 1991 Nov; 7(5):441-50. PubMed ID: 1764414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: II. Modulation by gamma-aminobutyric acid and serotonin.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1022-31. PubMed ID: 3950617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina.
    Douglas RH; Wagner HJ; Zaunreiter M; Behrens UD; Djamgoz MB
    Vis Neurosci; 1992; 9(3-4):335-43. PubMed ID: 1390391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depletion of retinal dopamine increases brightness perception in goldfish.
    Lin ZS; Yazulla S
    Vis Neurosci; 1994; 11(4):683-93. PubMed ID: 7918219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopaminergic control of light-adaptive synaptic plasticity and role in goldfish visual behavior.
    Yazulla S; Lin ZS; Studholme KM
    Vision Res; 1996 Dec; 36(24):4045-57. PubMed ID: 9068857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume transmission of dopamine may modulate light-adaptive plasticity of horizontal cell dendrites in the recovery phase following dopamine depletion in goldfish retina.
    Yazulla S; Studholme KM
    Vis Neurosci; 1995; 12(5):827-36. PubMed ID: 8924407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drugs and the frog retina. Effect of dopaminergic agents on the pigment screening of light- and dark-adapted frogs.
    Kemali M; Milici N; Kemali D
    Neuropharmacology; 1984 Mar; 23(3):381-5. PubMed ID: 6610134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopaminergic regulation of horizontal cell gap junction particle density in goldfish retina.
    Baldridge WH; Ball AK; Miller RG
    J Comp Neurol; 1987 Nov; 265(3):428-36. PubMed ID: 3693614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course and development of light adaptation processes in the outer zebrafish retina.
    Hodel C; Neuhauss SC; Biehlmaier O
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):653-62. PubMed ID: 16721865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina.
    Ribelayga C; Mangel SC
    J Comp Neurol; 2003 Dec; 467(2):243-53. PubMed ID: 14595771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding.
    Breese GR; Duncan GE; Napier TC; Bondy SC; Iorio LC; Mueller RA
    J Pharmacol Exp Ther; 1987 Jan; 240(1):167-76. PubMed ID: 3100767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):67-80. PubMed ID: 2298543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depletion of retinal dopamine does not affect the ERG b-wave increment threshold function in goldfish in vivo.
    Lin ZS; Yazulla S
    Vis Neurosci; 1994; 11(4):695-702. PubMed ID: 7918220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.