These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 849484)

  • 1. The aggregation of basic polypeptide residues bound to heparin.
    Stone AL; Epstein P
    Biochim Biophys Acta; 1977 Mar; 497(1):298-306. PubMed ID: 849484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between heparin and polylysine: a circular dichroism and molecular modelling study.
    Mulloy B; Crane DT; Drake AF; Davies DB
    Braz J Med Biol Res; 1996 Jun; 29(6):721-9. PubMed ID: 9070384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of DNA basic polypeptide interactions. II+ Influence of aromatic amino acid residues investigated with agarose bound lysine copolypeptides.
    Wehling K; Arfmann HA; Seipke G; Wagner KG
    Nucleic Acids Res; 1977 Mar; 4(3):513-22. PubMed ID: 194223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared linear dichroism investigations of deoxyribonucleic acid complexes with poly(L-arginine) and poly(L-lysine).
    Liquier J; Pinot-Lafaix M; Taillandier E; Brahms J
    Biochemistry; 1975 Sep; 14(19):4191-7. PubMed ID: 170956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylated poly(L-lysine): conformational effects and interactions with polynucleotides.
    Bello J; Granados EN; Lewinski S; Bello HR; Trueheart T
    J Biomol Struct Dyn; 1985 Feb; 2(5):899-913. PubMed ID: 3916937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of the secondary structure of antithrombin III and the location of the heparin-binding site.
    Villanueva GB
    J Biol Chem; 1984 Feb; 259(4):2531-6. PubMed ID: 6698980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular dichroism spectroscopy of heparin-antithrombin interactions.
    Stone AL; Beeler D; Oosta G; Rosenberg RD
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7190-4. PubMed ID: 6961402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of collagen-like peptide models of asymmetric acetylcholinesterase with glycosaminoglycans: spectroscopic studies of conformational changes and stability.
    Doss-Pepe E; Deprez P; Inestrosa NC; Brodsky B
    Biochemistry; 2000 Dec; 39(48):14884-92. PubMed ID: 11101304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of an intact proteoglycan and its fragments with basic homopolypeptides in dilute aqueous solution.
    Gelman RA; Blackwell J; Mathews MB
    Biochem J; 1974 Aug; 141(2):445-54. PubMed ID: 4281655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The induced circular dichroism of bilirubin complexed with the alpha-helix form of poly(L-lysine).
    Bouvier M; Brown GR
    Biochim Biophys Acta; 1989 May; 991(2):303-9. PubMed ID: 2719973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Synthesis and properties of nucleotide derivatives of poly(oligo)-L-lysine].
    Veĭko NN; Gromova ES; Shabarova ZA
    Mol Biol (Mosk); 1979; 13(3):595-600. PubMed ID: 460205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin models. The ionic strength dependence of model histone-DNA interactions: circular dichroism studies of lysine-leucine polypeptide-DNA complexes.
    Ong EC; Snell C; Fasman GD
    Biochemistry; 1976 Feb; 15(3):468-77. PubMed ID: 1252405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational change of poly(L-lysine) induced by lipid vesicles of dilauroylphosphatidic acid.
    Fukushima K; Muraoka Y; Inoue T; Shimozawa R
    Biophys Chem; 1988 Jul; 30(3):237-44. PubMed ID: 3207843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between model proteins and deoxyribonucleic acids.
    Pinkston MF; Ritter AH; Li HJ
    Biochemistry; 1976 Apr; 15(8):1676-85. PubMed ID: 1268190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational study of poly(L-lysine) interacting with acidic phospholipid vesicles.
    Fukushima K; Muraoka Y; Inoue T; Shimozawa R
    Biophys Chem; 1989 Sep; 34(1):83-90. PubMed ID: 2611343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopic study of the interaction of poly-L-lysine with dipalmitoylphosphatidylglycerol bilayers.
    Carrier D; Pézolet M
    Biophys J; 1984 Oct; 46(4):497-506. PubMed ID: 6548648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor.
    Fromm JR; Hileman RE; Caldwell EE; Weiler JM; Linhardt RJ
    Arch Biochem Biophys; 1995 Nov; 323(2):279-87. PubMed ID: 7487089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Circular dichroism of the complexes between poly-L-lysine and DNA with different GC contents].
    Novoseler MA
    Biofizika; 1983; 28(4):570-2. PubMed ID: 6351932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between homopolypeptides and lightly cross-linked microgels.
    Bysell H; Malmsten M
    Langmuir; 2009 Jan; 25(1):522-8. PubMed ID: 19061315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transition of alpha-helix to beta-structure of poly(L-lysine) induced by phosphatidic acid vesicles and its kinetics at alkaline pH.
    Fukushima K; Sakamoto T; Tsuji J; Kondo K; Shimozawa R
    Biochim Biophys Acta; 1994 Apr; 1191(1):133-40. PubMed ID: 8155666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.