BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8494899)

  • 1. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy.
    Royer CA; Hinck AP; Loh SN; Prehoda KE; Peng X; Jonas J; Markley JL
    Biochemistry; 1993 May; 32(19):5222-32. PubMed ID: 8494899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease.
    Raleigh DP; Evans PA; Pitkeathly M; Dobson CM
    J Mol Biol; 1992 Nov; 228(2):338-42. PubMed ID: 1453444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants of staphylococcal nuclease with altered configuration at proline-117.
    Hinck AP; Eberhardt ES; Markley JL
    Biochemistry; 1993 Nov; 32(44):11810-8. PubMed ID: 8218252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between local structure and global stability of a protein: mutants of staphylococcal nuclease.
    Alexandrescu AT; Hinck AP; Markley JL
    Biochemistry; 1990 May; 29(19):4516-25. PubMed ID: 2372535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-1 NMR evidence for three interconverting forms of staphylococcal nuclease: effects of mutations and solution conditions on their distribution.
    Alexandrescu AT; Ulrich EL; Markley JL
    Biochemistry; 1989 Jan; 28(1):204-11. PubMed ID: 2706243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability studies of amino acid substitutions at tyrosine 27 of the staphylococcal nuclease beta-barrel.
    Bhat MG; Ganley LM; Ledman DW; Goodman MA; Fox RO
    Biochemistry; 1997 Oct; 36(40):12167-74. PubMed ID: 9315853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pro117 to glycine mutation of staphylococcal nuclease simplifies the unfolding-folding kinetics.
    Kuwajima K; Okayama N; Yamamoto K; Ishihara T; Sugai S
    FEBS Lett; 1991 Sep; 290(1-2):135-8. PubMed ID: 1915864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid.
    Chen HM; Tsong TY
    Biophys J; 1994 Jan; 66(1):40-5. PubMed ID: 8130346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted backbone conformational and motional flexibilities of loops containing peptidyl-proline bonds dominate the enzyme activity of staphylococcal nuclease.
    Shan L; Tong Y; Xie T; Wang M; Wang J
    Biochemistry; 2007 Oct; 46(41):11504-13. PubMed ID: 17887731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structure in a tryptic fragment of performic acid oxidized ribonuclease A corresponding to a proposed polypeptide chain-folding initiation site detected by tyrosine fluorescence lifetime and proton magnetic resonance measurements.
    Haas E; Montelione GT; McWherter CA; Scheraga HA
    Biochemistry; 1987 Mar; 26(6):1672-83. PubMed ID: 3593685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein.
    Hinck AP; Truckses DM; Markley JL
    Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of staphylococcal nuclease denaturation. II. The A-state.
    Carra JH; Anderson EA; Privalov PL
    Protein Sci; 1994 Jun; 3(6):952-9. PubMed ID: 8069224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.
    Walkenhorst WF; Green SM; Roder H
    Biochemistry; 1997 May; 36(19):5795-805. PubMed ID: 9153420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A magnetization-transfer nuclear magnetic resonance study of the folding of staphylococcal nuclease.
    Evans PA; Kautz RA; Fox RO; Dobson CM
    Biochemistry; 1989 Jan; 28(1):362-70. PubMed ID: 2706262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease.
    Shortle D; Abeygunawardana C
    Structure; 1993 Oct; 1(2):121-34. PubMed ID: 8069625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.