These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 8494899)
41. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment. Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513 [TBL] [Abstract][Full Text] [Related]
42. Structural and energetic differences between insertions and substitutions in staphylococcal nuclease. Sondek J; Shortle D Proteins; 1992 Apr; 13(2):132-40. PubMed ID: 1620695 [TBL] [Abstract][Full Text] [Related]
43. Fluorometric study of the acid-induced denaturation of Staphylococcal nuclease and its mutant forms. Tanaka A Biosci Biotechnol Biochem; 2004 Jun; 68(6):1293-8. PubMed ID: 15215594 [TBL] [Abstract][Full Text] [Related]
44. Probing the contribution of internal cavities to the volume change of protein unfolding under pressure. Frye KJ; Royer CA Protein Sci; 1998 Oct; 7(10):2217-22. PubMed ID: 9792110 [TBL] [Abstract][Full Text] [Related]
45. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related]
46. Analysis of long-range interactions in a model denatured state of staphylococcal nuclease based on correlated changes in backbone dynamics. Sinclair JF; Shortle D Protein Sci; 1999 May; 8(5):991-1000. PubMed ID: 10338010 [TBL] [Abstract][Full Text] [Related]
47. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Ionescu RM; Eftink MR Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404 [TBL] [Abstract][Full Text] [Related]
48. Mapping staphylococcal nuclease conformation using an EDTA-Fe derivative attached to genetically engineered cysteine residues. Ermácora MR; Ledman DW; Hellinga HW; Hsu GW; Fox RO Biochemistry; 1994 Nov; 33(46):13625-41. PubMed ID: 7947771 [TBL] [Abstract][Full Text] [Related]
49. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment: spectroscopic studies. Wong CY; Eftink MR Biochemistry; 1998 Jun; 37(25):8938-46. PubMed ID: 9636035 [TBL] [Abstract][Full Text] [Related]
50. Deletion of the omega-loop in the active site of staphylococcal nuclease. 1. Effect on catalysis and stability. Poole LB; Loveys DA; Hale SP; Gerlt JA; Stanczyk SM; Bolton PH Biochemistry; 1991 Apr; 30(15):3621-7. PubMed ID: 2015219 [TBL] [Abstract][Full Text] [Related]
51. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917 [TBL] [Abstract][Full Text] [Related]
52. Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Lerch MT; López CJ; Yang Z; Kreitman MJ; Horwitz J; Hubbell WL Proc Natl Acad Sci U S A; 2015 May; 112(19):E2437-46. PubMed ID: 25918400 [TBL] [Abstract][Full Text] [Related]
53. Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease. Frye KJ; Perman CS; Royer CA Biochemistry; 1996 Aug; 35(31):10234-9. PubMed ID: 8756489 [TBL] [Abstract][Full Text] [Related]
54. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609 [TBL] [Abstract][Full Text] [Related]
55. Effect of salts on the stability and folding of staphylococcal nuclease. Nishimura C; Uversky VN; Fink AL Biochemistry; 2001 Feb; 40(7):2113-28. PubMed ID: 11329280 [TBL] [Abstract][Full Text] [Related]
56. The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant. Kördel J; Forsén S; Drakenberg T; Chazin WJ Biochemistry; 1990 May; 29(18):4400-9. PubMed ID: 2350544 [TBL] [Abstract][Full Text] [Related]
57. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations. Hodel A; Rice LM; Simonson T; Fox RO; Brünger AT Protein Sci; 1995 Apr; 4(4):636-54. PubMed ID: 7613463 [TBL] [Abstract][Full Text] [Related]
58. Thermodynamic characterization of an equilibrium folding intermediate of staphylococcal nuclease. Xie D; Fox R; Freire E Protein Sci; 1994 Dec; 3(12):2175-84. PubMed ID: 7756977 [TBL] [Abstract][Full Text] [Related]
59. Cold denaturation and 2H2O stabilization of a staphylococcal nuclease mutant. Antonino LC; Kautz RA; Nakano T; Fox RO; Fink AL Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7715-8. PubMed ID: 1652762 [TBL] [Abstract][Full Text] [Related]
60. Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease. Sallum CO; Martel DM; Fournier RS; Matousek WM; Alexandrescu AT Biochemistry; 2005 May; 44(17):6392-403. PubMed ID: 15850373 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]