These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 8494902)
21. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Guo F; Gooding AR; Cech TR Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509 [TBL] [Abstract][Full Text] [Related]
22. The 2'-hydroxyl group of the guanosine nucleophile donates a functionally important hydrogen bond in the tetrahymena ribozyme reaction. Hougland JL; Sengupta RN; Dai Q; Deb SK; Piccirilli JA Biochemistry; 2008 Jul; 47(29):7684-94. PubMed ID: 18572927 [TBL] [Abstract][Full Text] [Related]
23. 2'-Hydroxyl groups important for exon polymerization and reverse exon ligation reactions catalyzed by a group I ribozyme. Berzal-Herranz A; Chowrira BM; Polsenberg JF; Burke JM Biochemistry; 1993 Sep; 32(35):8981-6. PubMed ID: 8369271 [TBL] [Abstract][Full Text] [Related]
24. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Pyle AM; Murphy FL; Cech TR Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367 [TBL] [Abstract][Full Text] [Related]
25. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu). Zaug AJ; Dávila-Aponte JA; Cech TR Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660 [TBL] [Abstract][Full Text] [Related]
26. Extraordinarily slow binding of guanosine to the Tetrahymena group I ribozyme: implications for RNA preorganization and function. Karbstein K; Herschlag D Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2300-5. PubMed ID: 12591943 [TBL] [Abstract][Full Text] [Related]
27. Molecular recognition in a trans excision-splicing ribozyme: non-Watson-Crick base pairs at the 5' splice site and omegaG at the 3' splice site can play a role in determining the binding register of reaction substrates. Baum DA; Sinha J; Testa SM Biochemistry; 2005 Jan; 44(3):1067-77. PubMed ID: 15654763 [TBL] [Abstract][Full Text] [Related]
28. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans. Sargueil B; Tanner NK J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170 [TBL] [Abstract][Full Text] [Related]
29. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction. McConnell TS; Herschlag D; Cech TR Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875 [TBL] [Abstract][Full Text] [Related]
30. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes. Kuo LY; Cech TR Nucleic Acids Res; 1996 Oct; 24(19):3722-7. PubMed ID: 8871550 [TBL] [Abstract][Full Text] [Related]
31. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Shan SO; Herschlag D Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151 [TBL] [Abstract][Full Text] [Related]
32. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. Bevilacqua PC; Sugimoto N; Turner DH Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239 [TBL] [Abstract][Full Text] [Related]
33. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis. Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214 [TBL] [Abstract][Full Text] [Related]
34. Probing the interplay between the two steps of group I intron splicing: competition of exogenous guanosine with omega G. Zarrinkar PP; Sullenger BA Biochemistry; 1998 Dec; 37(51):18056-63. PubMed ID: 9922174 [TBL] [Abstract][Full Text] [Related]
35. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups. Pyle AM; Cech TR Nature; 1991 Apr; 350(6319):628-31. PubMed ID: 1708111 [TBL] [Abstract][Full Text] [Related]
36. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena. Pyle AM; McSwiggen JA; Cech TR Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8187-91. PubMed ID: 2236030 [TBL] [Abstract][Full Text] [Related]
37. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity. Campbell TB; Cech TR Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205 [TBL] [Abstract][Full Text] [Related]
38. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site. Forconi M; Sengupta RN; Piccirilli JA; Herschlag D Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542 [TBL] [Abstract][Full Text] [Related]
39. The guanosine binding site of the Tetrahymena ribozyme. Michel F; Hanna M; Green R; Bartel DP; Szostak JW Nature; 1989 Nov; 342(6248):391-5. PubMed ID: 2685606 [TBL] [Abstract][Full Text] [Related]
40. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions. Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]