These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 849511)
1. [Induction of fluorescence of a single chloroplast in an entire cell of the green alga Haematococcus pluvialis]. Sineshchekov OA; Litvin FF Biofizika; 1977; 22(1):58-63. PubMed ID: 849511 [TBL] [Abstract][Full Text] [Related]
2. Haematococcus pluvialis cell-mass sensing using ultraviolet fluorescence spectroscopy. Lababpour A; Hong SJ; Lee CG J Microbiol Biotechnol; 2007 Dec; 17(12):1922-30. PubMed ID: 18167437 [TBL] [Abstract][Full Text] [Related]
3. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. Imamoglu E; Dalay MC; Sukan FV N Biotechnol; 2009 Oct; 26(3-4):199-204. PubMed ID: 19712763 [TBL] [Abstract][Full Text] [Related]
4. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Kang CD; Lee JS; Park TH; Sim SJ Appl Microbiol Biotechnol; 2007 Apr; 74(5):987-94. PubMed ID: 17216459 [TBL] [Abstract][Full Text] [Related]
5. Motility in the siphonous green alga Bryopsis. II. Chloroplast movement requires organized arrays of both microtubules and actin filaments. Menzel D; Schliwa M Eur J Cell Biol; 1986 Apr; 40(2):286-95. PubMed ID: 3519223 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Choi YE; Yun YS; Park JM Biotechnol Prog; 2002; 18(6):1170-5. PubMed ID: 12467447 [TBL] [Abstract][Full Text] [Related]
7. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Sarada R; Vidhyavathi R; Usha D; Ravishankar GA J Agric Food Chem; 2006 Oct; 54(20):7585-8. PubMed ID: 17002425 [TBL] [Abstract][Full Text] [Related]
8. Isolation and proteomic analysis [corrected] of cell wall-deficient Haematococcus pluvialis mutants. Wang SB; Chen F; Sommerfeld M; Hu Q Proteomics; 2005 Dec; 5(18):4839-51. PubMed ID: 16281177 [TBL] [Abstract][Full Text] [Related]
9. Digital image processing-an alternate tool for monitoring of pigment levels in cultured cells with special reference to green alga Haematococcus pluvialis. Kamath SB; Chidambar S; Brinda BR; Kumar MA; Sarada R; Ravishankar GA Biosens Bioelectron; 2005 Nov; 21(5):768-73. PubMed ID: 16242616 [TBL] [Abstract][Full Text] [Related]
10. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. Katsuda T; Shimahara K; Shiraishi H; Yamagami K; Ranjbar R; Katoh S J Biosci Bioeng; 2006 Nov; 102(5):442-6. PubMed ID: 17189172 [TBL] [Abstract][Full Text] [Related]
11. Rhythmic chloroplast migration in the green alga Ulva: dissection of movement mechanism by differential inhibitor effects. Britz SJ; Briggs WR Eur J Cell Biol; 1983 Jul; 31(1):1-8. PubMed ID: 6617665 [TBL] [Abstract][Full Text] [Related]
12. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Kang CD; Lee JS; Park TH; Sim SJ Appl Microbiol Biotechnol; 2005 Aug; 68(2):237-41. PubMed ID: 15711942 [TBL] [Abstract][Full Text] [Related]
13. Motility in the siphonous green alga Bryopsis. I. Spatial organization of the cytoskeleton and organelle movements. Menzel D; Schliwa M Eur J Cell Biol; 1986 Apr; 40(2):275-85. PubMed ID: 3519222 [TBL] [Abstract][Full Text] [Related]
14. Stress-related differential expression of multiple beta-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. Huang JC; Chen F; Sandmann G J Biotechnol; 2006 Mar; 122(2):176-85. PubMed ID: 16242201 [TBL] [Abstract][Full Text] [Related]
15. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Vidhyavathi R; Venkatachalam L; Sarada R; Ravishankar GA J Exp Bot; 2008; 59(6):1409-18. PubMed ID: 18343887 [TBL] [Abstract][Full Text] [Related]
16. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Lemieux C; Otis C; Turmel M Nature; 2000 Feb; 403(6770):649-52. PubMed ID: 10688199 [TBL] [Abstract][Full Text] [Related]
17. Effect of light intensity and frequency of flashing light from blue light emitting diodes on astaxanthin production by Haematococcus pluvialis. Katsuda T; Shiraishi H; Ishizu N; Ranjbar R; Katoh S J Biosci Bioeng; 2008 Mar; 105(3):216-20. PubMed ID: 18397771 [TBL] [Abstract][Full Text] [Related]
18. Effective utilization of transmitted light for astaxanthin production by Haematococcus pluvialis. Yoshimura S; Ranjbar R; Inoue R; Katsuda T; Katoh S J Biosci Bioeng; 2006 Aug; 102(2):97-101. PubMed ID: 17027870 [TBL] [Abstract][Full Text] [Related]
19. Transcellular delta -mu H+ in Valonia ventricosa and its effect on delayed fluorescence. Gyenes M Gen Physiol Biophys; 1987 Aug; 6(4):369-81. PubMed ID: 3666429 [TBL] [Abstract][Full Text] [Related]
20. On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Aflalo C; Meshulam Y; Zarka A; Boussiba S Biotechnol Bioeng; 2007 Sep; 98(1):300-5. PubMed ID: 17318905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]