BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8495359)

  • 1. Specificity of behavioral and neurochemical dysfunction in the chakragati mouse: a novel genetic model of a movement disorder.
    Fitzgerald LW; Ratty AK; Teitler M; Gross KW; Glick SD
    Brain Res; 1993 Apr; 608(2):247-58. PubMed ID: 8495359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric elevation of striatal dopamine D2 receptors in the chakragati mouse: neurobehavioral dysfunction in a transgenic insertional mutant.
    Fitzgerald LW; Miller KJ; Ratty AK; Glick SD; Teitler M; Gross KW
    Brain Res; 1992 May; 580(1-2):18-26. PubMed ID: 1354555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in dopamine D3 receptors in the circling (ci3) rat mutant.
    Schirmer M; Nobrega JN; Harrison SJ; Löscher W
    Neuroscience; 2007 Feb; 144(4):1462-9. PubMed ID: 17187934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemical and neurochemical studies on nigral and striatal functions in the circling (ci) rat, a genetic animal model with spontaneous rotational behavior.
    Richter A; Ebert U; Nobrega JN; Vallbacka JJ; Fedrowitz M; Löscher W
    Neuroscience; 1999 Mar; 89(2):461-71. PubMed ID: 10077328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neurobehavioral screening of the ckr mouse mutant: implications for an animal model of schizophrenia.
    Torres G; Hallas BH; Vernace VA; Jones C; Gross KW; Horowitz JM
    Brain Res Bull; 2004 Jan; 62(4):315-26. PubMed ID: 14709346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel black-hooded mutant rat (ci3) with spontaneous circling behavior but normal auditory and vestibular functions.
    Lessenich A; Lindemann S; Richter A; Hedrich HJ; Wedekind D; Kaiser A; Löscher W
    Neuroscience; 2001; 107(4):615-28. PubMed ID: 11720785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microdialysis study of striatal dopamine release in the circling rat, a genetic animal model with spontaneous lateralized rotational behavior.
    Fedrowitz M; Potschka H; Richter A; Löscher W
    Neuroscience; 2000; 97(1):69-77. PubMed ID: 10771340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary evidence for reduced social interactions in Chakragati mutants modeling certain symptoms of schizophrenia.
    Torres G; Meeder BA; Hallas BH; Gross KW; Horowitz JM
    Brain Res; 2005 Jun; 1046(1-2):180-6. PubMed ID: 15882844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral and neurochemical dysfunction in the circling (ci) rat: a novel genetic animal model of a movement disorder.
    Löscher W; Richter A; Nikkhah G; Rosenthal C; Ebert U; Hedrich HJ
    Neuroscience; 1996 Oct; 74(4):1135-42. PubMed ID: 8895881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regionally selective changes in neurotransmitter receptors in the brain of the 5-HT1B knockout mouse.
    Ase AR; Reader TA; Hen R; Descarries L
    J Chem Neuroanat; 2008 Jul; 35(4):356-63. PubMed ID: 18406571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumbal core: essential link in feed-forward spiraling striato-nigro-striatal in series connected loop.
    Ikeda H; Koshikawa N; Cools AR
    Neuroscience; 2013 Nov; 252():60-7. PubMed ID: 23933312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating complex basal ganglia circuitry in the regulation of motor behaviour, with particular focus on orofacial movement.
    Ikeda H; Adachi K; Fujita S; Tomiyama K; Saigusa T; Kobayashi M; Koshikawa N; Waddington JL
    Behav Pharmacol; 2015 Feb; 26(1-2):18-32. PubMed ID: 25485640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of D1 and D2 dopamine receptors on the ipsilateral vs. contralateral side in rats with unilateral lesions of the dopaminergic nigrostriatal pathway.
    Sonsalla PK; Manzino L; Heikkila RE
    J Pharmacol Exp Ther; 1988 Oct; 247(1):180-5. PubMed ID: 2971797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent dopamine D1 and D2 receptors in the weaver mutant mouse: receptor binding and coupling to adenylyl cyclase.
    Dewar KM; Paquet M; Sequeira A
    J Neural Transm (Vienna); 1999; 106(5-6):487-97. PubMed ID: 10443552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chakragati mouse: a mouse model for rapid in vivo screening of antipsychotic drug candidates.
    Dawe GS; Ratty AK
    Biotechnol J; 2007 Nov; 2(11):1344-52. PubMed ID: 17886239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography.
    Beckstead RM; Wooten GF; Trugman JM
    J Comp Neurol; 1988 Feb; 268(1):131-45. PubMed ID: 2964456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in dopamine uptake sites and D1 and D2 receptors in cats symptomatic for and recovered from experimental parkinsonism.
    Frohna PA; Rothblat DS; Joyce JN; Schneider JS
    Synapse; 1995 Jan; 19(1):46-55. PubMed ID: 7709343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-specific proportion of the two isoforms of the dopamine D2 receptor in the mouse striatum: associated neural and behavioral phenotypes.
    Colelli V; Fiorenza MT; Conversi D; Orsini C; Cabib S
    Genes Brain Behav; 2010 Oct; 9(7):703-11. PubMed ID: 20546314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substantia nigra glutamate antagonists produce contralateral turning and basal ganglia Fos expression: interactions with D1 and D2 dopamine receptor agonists.
    McPherson RJ; Marshall JF
    Synapse; 2000 Jun; 36(3):194-204. PubMed ID: 10819899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.
    Gomez-Sintes R; Bortolozzi A; Artigas F; Lucas JJ
    Eur Neuropsychopharmacol; 2014 Sep; 24(9):1524-33. PubMed ID: 25088904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.