BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 8495620)

  • 1. Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular filtration rate in IDDM subjects with nephropathy.
    Passariello N; Sepe J; Marrazzo G; De Cicco A; Peluso A; Pisano MC; Sgambato S; Tesauro P; D'Onofrio F
    Diabetes Care; 1993 May; 16(5):789-95. PubMed ID: 8495620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Approaches to Diabetic Nephropathy from Bed to Bench.
    Tsai JL; Chen CH; Wu MJ; Tsai SF
    Biomedicines; 2022 Apr; 10(4):. PubMed ID: 35453626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and Pathological Roles of Aldose Reductase.
    Singh M; Kapoor A; Bhatnagar A
    Metabolites; 2021 Sep; 11(10):. PubMed ID: 34677370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of Glomerular Hyperfiltration and Cardiovascular Risk in Middle-Aged Healthy Individuals.
    Dupuis ME; Nadeau-Fredette AC; Madore F; Agharazii M; Goupil R
    JAMA Netw Open; 2020 Apr; 3(4):e202377. PubMed ID: 32275320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury.
    El Gamal H; Eid AH; Munusamy S
    Biomed Res Int; 2017; 2017():5903105. PubMed ID: 28386557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of general control nonderepressible 2 kinase protects human glomerular endothelial cells from harmful high-glucose-induced molecular pathways.
    Eleftheriadis T; Tsogka K; Pissas G; Antoniadi G; Liakopoulos V; Stefanidis I
    Int Urol Nephrol; 2016 Oct; 48(10):1731-9. PubMed ID: 27465797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets.
    Toth-Manikowski S; Atta MG
    J Diabetes Res; 2015; 2015():697010. PubMed ID: 26064987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic Modalities in Diabetic Nephropathy: Future Approaches.
    Reeves WB; Rawal BB; Abdel-Rahman EM; Awad AS
    Open J Nephrol; 2012 Jun; 2(2):5-18. PubMed ID: 23293752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of treatment that target protective mechanisms against diabetic nephropathy.
    Mima A; Qi W; King GL
    Semin Nephrol; 2012 Sep; 32(5):471-8. PubMed ID: 23062988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldose reductase, oxidative stress and diabetic cardiovascular complications.
    Vedantham S; Ananthakrishnan R; Schmidt AM; Ramasamy R
    Cardiovasc Hematol Agents Med Chem; 2012 Sep; 10(3):234-40. PubMed ID: 22632267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy.
    Luis-Rodríguez D; Martínez-Castelao A; Górriz JL; De-Álvaro F; Navarro-González JF
    World J Diabetes; 2012 Jan; 3(1):7-18. PubMed ID: 22253941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of 276G>T adiponectin gene polymorphism to plasma adiponectin and albuminuria in type 2 diabetic patients.
    Kacso IM; Trifa AP; Popp RA; Kacso G
    Int Urol Nephrol; 2012 Dec; 44(6):1771-7. PubMed ID: 22222620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE).
    Baba SP; Hellmann J; Srivastava S; Bhatnagar A
    Chem Biol Interact; 2011 May; 191(1-3):357-63. PubMed ID: 21276777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model.
    Ramasamy R; Goldberg IJ
    Circ Res; 2010 May; 106(9):1449-58. PubMed ID: 20466987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox state-dependent and sorbitol accumulation-independent diabetic albuminuria in mice with transgene-derived human aldose reductase and sorbitol dehydrogenase deficiency.
    Ii S; Ohta M; Kudo E; Yamaoka T; Tachikawa T; Moritani M; Itakura M; Yoshimoto K
    Diabetologia; 2004 Mar; 47(3):541-548. PubMed ID: 14968292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic nephropathy. Its relationship to hypertension and means of pharmacological intervention.
    Baba T; Neugebauer S; Watanabe T
    Drugs; 1997 Aug; 54(2):197-234. PubMed ID: 9257079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Vanderbilt Classification System in the evaluation of diabetic retinopathy patients treated with Alredase.
    Feman SS; Leonard-Martin TC; Redman JR
    Trans Am Ophthalmol Soc; 1996; 94():433-47; discussion 447-50. PubMed ID: 8981708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impairment of afferent arteriolar myogenic responsiveness in the galactose-fed rat is prevented by tolrestat.
    Forster HG; ter Wee PM; Hohman TC; Epstein M
    Diabetologia; 1996 Aug; 39(8):907-14. PubMed ID: 8858212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of early insulin treatment on ultrastructural changes of glomeruli in diabetic rats revealed by the quick-freezing and deep-etching method.
    Moriya T; Ohno S; Tanaka K; Fujii Y; Yajima Y
    Diabetologia; 1996 Jun; 39(6):632-40. PubMed ID: 8781758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The efficacy of aldose reductase inhibitors in the management of diabetic complications. Comparison with intensive insulin treatment and pancreatic transplantation.
    van Gerven JM; Tjon-A-Tsien AM
    Drugs Aging; 1995 Jan; 6(1):9-28. PubMed ID: 7696781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.