These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 8495691)
21. Lack of age-specific influence on leg blood flow during incremental calf plantar-flexion exercise in men and women. Reilly H; Lane LM; Egaña M Eur J Appl Physiol; 2018 May; 118(5):989-1001. PubMed ID: 29502172 [TBL] [Abstract][Full Text] [Related]
22. Determinants of skin sympathetic nerve responses to isometric exercise. Wilson TE; Dyckman DJ; Ray CA J Appl Physiol (1985); 2006 Mar; 100(3):1043-8. PubMed ID: 16282434 [TBL] [Abstract][Full Text] [Related]
23. Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle. Green S; Cameron E Eur J Appl Physiol; 2015 May; 115(5):879-90. PubMed ID: 25479730 [TBL] [Abstract][Full Text] [Related]
24. Blood flow in resting (contralateral) arm and leg during isometric contraction. Eklund B; Kaijser L; Knutsson E J Physiol; 1974 Jul; 240(1):111-24. PubMed ID: 4850798 [TBL] [Abstract][Full Text] [Related]
25. Active hyperemia and vascular conductance differ between men and women for an isometric fatiguing contraction. Hunter SK; Schletty JM; Schlachter KM; Griffith EE; Polichnowski AJ; Ng AV J Appl Physiol (1985); 2006 Jul; 101(1):140-50. PubMed ID: 16601303 [TBL] [Abstract][Full Text] [Related]
26. Differential control of forearm and calf vascular resistance during one-leg exercise. Taylor JA; Joyner MJ; Chase PB; Seals DR J Appl Physiol (1985); 1989 Nov; 67(5):1791-800. PubMed ID: 2600013 [TBL] [Abstract][Full Text] [Related]
27. Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction. Hunter SK; Griffith EE; Schlachter KM; Kufahl TD Muscle Nerve; 2009 Jan; 39(1):42-53. PubMed ID: 19086076 [TBL] [Abstract][Full Text] [Related]
28. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans. Richards JC; Crecelius AR; Kirby BS; Larson DG; Dinenno FA Exp Physiol; 2012 Jun; 97(6):750-61. PubMed ID: 22327330 [TBL] [Abstract][Full Text] [Related]
29. Vascular and electromyographic responses evoked in forearm muscle by isometric contraction of the contralateral forearm. Cotzias C; Marshall JM Clin Auton Res; 1993 Feb; 3(1):21-30. PubMed ID: 8477176 [TBL] [Abstract][Full Text] [Related]
30. The effect of changing limb position on the validity of venous occlusion plethysmography. Rojek AM; Wood RE; Stewart IB Physiol Meas; 2007 Aug; 28(8):861-7. PubMed ID: 17664678 [TBL] [Abstract][Full Text] [Related]
31. The exercise pressor response to sustained handgrip does not augment blood flow in the contracting forearm skeletal muscle. Hansen J; Jacobsen TN; Amtorp O Acta Physiol Scand; 1993 Dec; 149(4):419-25. PubMed ID: 8128890 [TBL] [Abstract][Full Text] [Related]
32. Modification of forearm vascular function following short-term handgrip exercise training. Alomari MA; Welsch MA; Prisby RD; Lee CM; Wood RH Int J Sports Med; 2001 Jul; 22(5):361-5. PubMed ID: 11510873 [TBL] [Abstract][Full Text] [Related]
33. Lactate kinetics in resting and exercising forearms during moderate-intensity supine leg exercise. Catcheside PG; Scroop GC J Appl Physiol (1985); 1993 Jan; 74(1):435-43. PubMed ID: 8444725 [TBL] [Abstract][Full Text] [Related]
34. Plasma potassium concentration and doppler blood flow during and following submaximal handgrip contractions. Jensen BR; Fallentin N; Byström S; Sjøgaard G Acta Physiol Scand; 1993 Feb; 147(2):203-11. PubMed ID: 8475747 [TBL] [Abstract][Full Text] [Related]
35. Changes in muscle sympathetic nerve activity and calf blood flow during static handgrip exercise. Saito M; Mano T; Iwase S Eur J Appl Physiol Occup Physiol; 1990; 60(4):277-81. PubMed ID: 2357983 [TBL] [Abstract][Full Text] [Related]
36. Local and central circulatory responses to sustained contractions and the effect of free or restricted arterial inflow on post-exercise hyperaemia. Lind AR; McNicol GW J Physiol; 1967 Oct; 192(3):575-93. PubMed ID: 6058994 [TBL] [Abstract][Full Text] [Related]
37. Sympathetic neural discharge and vascular resistance during exercise in humans. Seals DR J Appl Physiol (1985); 1989 May; 66(5):2472-8. PubMed ID: 2745308 [TBL] [Abstract][Full Text] [Related]
38. Transient increase in femoral arterial blood flow to the contralateral non-exercising limb during one-legged exercise. Yoshizawa M; Shimizu-Okuyama S; Kagaya A Eur J Appl Physiol; 2008 Jul; 103(5):509-14. PubMed ID: 18425531 [TBL] [Abstract][Full Text] [Related]
39. Age and regional specificity of peak limb vascular conductance in women. Ridout SJ; Parker BA; Proctor DN J Appl Physiol (1985); 2005 Dec; 99(6):2067-74. PubMed ID: 16109827 [TBL] [Abstract][Full Text] [Related]
40. Different behavior of the resistance vessels of the human calf and forearm during contralateral isometric exercise, mental stress, and abnormal respiratory movements. Rusch NJ; Shepherd JT; Webb RC; Vanhoutte PM Circ Res; 1981 Jun; 48(6 Pt 2):I118-30. PubMed ID: 7226455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]