BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8495742)

  • 1. Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays).
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    FEBS Lett; 1993 May; 323(1-2):31-4. PubMed ID: 8495742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves.
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    Eur J Biochem; 1994 Jan; 219(1-2):671-9. PubMed ID: 8307032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris.
    Schneegurt MA; Beale SI
    Biochemistry; 1992 Dec; 31(47):11677-83. PubMed ID: 1445904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.
    Shibata Y; Katoh W; Tahara Y
    Biochim Biophys Acta; 2013 Apr; 1827(4):520-8. PubMed ID: 23416843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L.
    Folly P; Engel N
    J Biol Chem; 1999 Jul; 274(31):21811-6. PubMed ID: 10419497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C2
    Garg H; Loughlin PC; Willows RD; Chen M
    J Biol Chem; 2017 Nov; 292(47):19279-19289. PubMed ID: 28972142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f.
    Sawicki A; Willows RD; Chen M
    Photosynth Res; 2019 Apr; 140(1):115-127. PubMed ID: 30604202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll.
    Curty C; Engel N; Gossauer A
    FEBS Lett; 1995 May; 364(1):41-4. PubMed ID: 7750540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The participation of the Shemin and C5 pathways in 5-aminolaevulinate and chlorophyll formation in higher plants and facultative photosynthetic bacteria.
    Klein O; Porra RJ
    Hoppe Seylers Z Physiol Chem; 1982 Jun; 363(6):551-62. PubMed ID: 7106702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors.
    Schliep M; Crossett B; Willows RD; Chen M
    J Biol Chem; 2010 Sep; 285(37):28450-6. PubMed ID: 20610399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays.
    Peterson RB; Schultes NP; McHale NA; Zelitch I
    Plant Physiol; 2016 May; 171(1):125-38. PubMed ID: 27002061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of manganese deficiency on spectral characteristics and oxygen evolution in maize chloroplasts.
    Gong X; Wang Y; Liu C; Wang S; Zhao X; Zhou M; Li N; Lu Y; Hong F
    Biol Trace Elem Res; 2010 Sep; 136(3):372-82. PubMed ID: 19841869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HPLC determination of photosynthetic pigments during greening of etiolated barley leaves. Evidence for the biosynthesis of chlorophyll a'.
    Nakamura A; Watanabe T
    FEBS Lett; 1998 Apr; 426(2):201-4. PubMed ID: 9599008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves.
    Ignatov NV; Litvin FF
    Biochemistry (Mosc); 2002 Aug; 67(8):949-55. PubMed ID: 12223097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.
    Savitch LV; Ivanov AG; Gudynaite-Savitch L; Huner NP; Simmonds J
    Plant Cell Physiol; 2011 Jun; 52(6):1042-54. PubMed ID: 21546369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of chlorophyll biosynthesis by mercury in excised etiolated maize leaf segments during greening: effect of 2-oxoglutarate.
    Jain M; Gadre R
    Indian J Exp Biol; 2004 Apr; 42(4):419-23. PubMed ID: 15088693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase.
    Hörtensteiner S; Wüthrich KL; Matile P; Ongania KH; Kräutler B
    J Biol Chem; 1998 Jun; 273(25):15335-9. PubMed ID: 9624113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on chlorophyll accumulation of maize leaves grown under different illuminations.
    Német B
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):227-31. PubMed ID: 4421156
    [No Abstract]   [Full Text] [Related]  

  • 19. Functional and structural organization of chlorophyll in the developing photosynthetic membranes of Euglena gracilis Z. IV. Light-harvesting properties of system II photosynthetic units and thylakoid ultrastructure during greening under intermittent light.
    Dubertret G; Lefort-Tran M
    Biochim Biophys Acta; 1981 Jan; 634(1):52-69. PubMed ID: 6781538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-dependent accumulation and localization of photosystem II proteins in maize.
    Sutton A; Sieburth LE; Bennett J
    Eur J Biochem; 1987 May; 164(3):571-8. PubMed ID: 3552671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.