BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8495742)

  • 21. [Transformation of protochlorophyll into chlorophyll in etiolated maize leaves in infiltration of Picea excelsa extract].
    GODNEV TN; TERENT'EVA MV
    Dokl Akad Nauk SSSR; 1953 Feb; 88(4):725-7. PubMed ID: 13033725
    [No Abstract]   [Full Text] [Related]  

  • 22. Oxygen uptake photosensitized by disorganized chlorophyll in model systems and thylakoids of greening barley.
    Caspi V; Malkin S; Marder JB
    Photochem Photobiol; 2000 Apr; 71(4):441-6. PubMed ID: 10824595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Labelling of chlorophylls and precursors by [2-14C]glycine and 2-[1-14C]oxoglutarate in Rhodopseudomonas spheroides and Zea mays. Resolution of the C5 and Shemin pathways of 5-aminolaevulinate biosynthesis by thin-layer radiochromatography.
    Porra RJ
    Eur J Biochem; 1986 Apr; 156(1):111-21. PubMed ID: 3485524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The wound-inducible Lls1 gene from maize is an orthologue of the Arabidopsis Acd1 gene, and the LLS1 protein is present in non-photosynthetic tissues.
    Yang M; Wardzala E; Johal GS; Gray J
    Plant Mol Biol; 2004 Jan; 54(2):175-91. PubMed ID: 15159621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Demetalation kinetics of chlorophyll derivatives possessing different substituents at the 7-position under acidic conditions.
    Hirai Y; Kashimura S; Saga Y
    Photochem Photobiol; 2011; 87(2):302-7. PubMed ID: 21143484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Greening of etiolated bean leaves in far red light.
    De Greef J; Butler WL; Roth TF
    Plant Physiol; 1971 Apr; 47(4):457-64. PubMed ID: 16657643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Study of the greening of etiolated mutants of maize].
    Lang F; Vorob'eva LM; Krasnovskiĭ AA
    Biokhimiia; 1969; 34(2):257-65. PubMed ID: 5802066
    [No Abstract]   [Full Text] [Related]  

  • 28. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density.
    Wei S; Wang X; Jiang D; Dong S
    BMC Plant Biol; 2018 Dec; 18(1):378. PubMed ID: 30594144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency.
    Gong X; Hong M; Wang Y; Zhou M; Cai J; Liu C; Gong S; Hong F
    Biol Trace Elem Res; 2011 Jun; 141(1-3):305-16. PubMed ID: 20480399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaf Gas Exchange and Chlorophyll a Fluorescence in Maize Leaves Infected with Stenocarpella macrospora.
    Bermúdez-Cardona MB; Wordell Filho JA; Rodrigues FÁ
    Phytopathology; 2015 Jan; 105(1):26-34. PubMed ID: 25014681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen isotope enrichment (Delta(18)O) reflects yield potential and drought resistance in maize.
    Cabrera-Bosquet L; Sánchez C; Araus JL
    Plant Cell Environ; 2009 Nov; 32(11):1487-99. PubMed ID: 19558406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction.
    Ruuska SA; Badger MR; Andrews TJ; von Caemmerer S
    J Exp Bot; 2000 Feb; 51 Spec No():357-68. PubMed ID: 10938843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of zinc on antioxidant response in maize (Zea mays L.) leaves.
    Pandey N; Singh AK; Pathak GC; Sharma CP
    Indian J Exp Biol; 2002 Aug; 40(8):954-6. PubMed ID: 12597030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of space conditions on photosynthetic pigment contents and chloroplast ultrastructure of maize leaves.
    Li S; Liu M; Wang Y; Liu Y; Zhang C; Zeng M
    Space Med Med Eng (Beijing); 1998 Dec; 11(6):396-400. PubMed ID: 11543374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and fine mapping of a necrotic leaf mutant in maize (Zea mays L.).
    Wang L; Han S; Zhong S; Wei H; Zhang Y; Zhao Y; Liu B
    J Genet Genomics; 2013 Jun; 40(6):307-14. PubMed ID: 23790630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types.
    Sheen JY; Bogorad L
    Proc Natl Acad Sci U S A; 1986 Oct; 83(20):7811-5. PubMed ID: 3532122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etiochloroplasts.
    Chitnis PR; Harel E; Kohorn BD; Tobin EM; Thornber JP
    J Cell Biol; 1986 Mar; 102(3):982-8. PubMed ID: 3512584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin of the two carbonyl oxygens of bacteriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation.
    Porra RJ; Schäfer W; Gad'on N; Katheder I; Drews G; Scheer H
    Eur J Biochem; 1996 Jul; 239(1):85-92. PubMed ID: 8706723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Independent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species.
    Zheng Q; Oldenburg DJ; Bendich AJ
    J Exp Bot; 2011 May; 62(8):2715-30. PubMed ID: 21266496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the biosynthesis of 2-hydroxy-1,4-benzoxazin-3-one (HBOA) from 3-hydroxyindolin-2-one in Zea mays.
    Spiteller P; Glawischnig E; Gierl A; Steglich W
    Phytochemistry; 2001 Jun; 57(3):373-6. PubMed ID: 11393516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.