BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8496942)

  • 1. Amidinium cation as a mimic of allylic carbocation: synthesis and squalene synthetase inhibitory activity of an amidinium analog of a carbocation intermediate.
    Prashad M
    J Med Chem; 1993 Mar; 36(5):631-2. PubMed ID: 8496942
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies with Guanidinium- and Amidinium-Based Inhibitors Suggest Minimal Stabilization of Allylic Carbocation Intermediates by Dehydrosqualene and Squalene Synthases.
    Abdelmagid WM; Adak T; Freeman JO; Tanner ME
    Biochemistry; 2018 Sep; 57(38):5591-5601. PubMed ID: 30179505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of squalene synthetase by farnesyl pyrophosphate analogues.
    de Montellano PR; Wei JS; Castillo R; Hsu CK; Boparai A
    J Med Chem; 1977 Feb; 20(2):243-9. PubMed ID: 189031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-(arylalkyl)farnesylamines: new potent squalene synthetase inhibitors.
    Prashad M; Kathawala FG; Scallen T
    J Med Chem; 1993 May; 36(10):1501-4. PubMed ID: 8496919
    [No Abstract]   [Full Text] [Related]  

  • 5. Nonparticipation of 105,000 x g liver supernatant or sterol carrier protein in the enzymatic conversion of farnesyl pyrophosphate to squalene by rat liver microsomes.
    Gavey KL; Scallen TJ
    J Biol Chem; 1978 Aug; 253(15):5470-5. PubMed ID: 209043
    [No Abstract]   [Full Text] [Related]  

  • 6. The squalene synthetase active site. Catalytic acceptance of 7- and 11- demethylfarnesyl pyrophosphates.
    Ortiz de Montellano PR; Boparai AS
    Biochem Biophys Res Commun; 1976 May; 76(2):520-5. PubMed ID: 800341
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro.
    Flint OP; Masters BA; Gregg RE; Durham SK
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):91-8. PubMed ID: 9221828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isoprenyl phosphinylformates: new inhibitors of squalene synthetase.
    Biller SA; Forster C; Gordon EM; Harrity T; Rich LC; Marretta J; Ciosek CP
    J Med Chem; 1991 Jun; 34(6):1912-4. PubMed ID: 2061928
    [No Abstract]   [Full Text] [Related]  

  • 9. Squalene synthetase. Stoichiometry and kinetics of presqualene pyrophosphate and squalene synthesis by yeast microsomes.
    Agnew WS; Popják G
    J Biol Chem; 1978 Jul; 253(13):4566-73. PubMed ID: 26684
    [No Abstract]   [Full Text] [Related]  

  • 10. Isoprenoid (phosphinylmethyl)phosphonates as inhibitors of squalene synthetase.
    Biller SA; Forster C; Gordon EM; Harrity T; Scott WA; Ciosek CP
    J Med Chem; 1988 Oct; 31(10):1869-71. PubMed ID: 3172121
    [No Abstract]   [Full Text] [Related]  

  • 11. Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver.
    Keller RK; Zhao Z; Chambers C; Ness GC
    Arch Biochem Biophys; 1996 Apr; 328(2):324-30. PubMed ID: 8645011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squalene synthetase.
    Popják G; Agnew WS
    Mol Cell Biochem; 1979 Oct; 27(2):97-116. PubMed ID: 41173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol pathway in rat hepatocytes.
    Hiyoshi H; Yanagimachi M; Ito M; Yasuda N; Okada T; Ikuta H; Shinmyo D; Tanaka K; Kurusu N; Yoshida I; Abe S; Saeki T; Tanaka H
    J Lipid Res; 2003 Jan; 44(1):128-35. PubMed ID: 12518031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipophilic 1,1-bisphosphonates are potent squalene synthase inhibitors and orally active cholesterol lowering agents in vivo.
    Ciosek CP; Magnin DR; Harrity TW; Logan JV; Dickson JK; Gordon EM; Hamilton KA; Jolibois KG; Kunselman LK; Lawrence RM
    J Biol Chem; 1993 Nov; 268(33):24832-7. PubMed ID: 8227045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Letter: Squalene synthetase. Differentiation between the two substrate binding sites by a substrate analogue.
    Ortiz de Montellano PR; Castillo R; Vinson W; Wei JS
    J Am Chem Soc; 1976 Mar; 98(7):2018-9. PubMed ID: 1254859
    [No Abstract]   [Full Text] [Related]  

  • 16. alpha-Phosphonosulfonic acids: potent and selective inhibitors of squalene synthase.
    Magnin DR; Biller SA; Chen Y; Dickson JK; Fryszman OM; Lawrence RM; Logan JV; Sieber-McMaster ES; Sulsky RB; Traeger SC; Hsieh DC; Lan SJ; Rinehart JK; Harrity TW; Jolibois KG; Kunselman LK; Rich LC; Slusarchyk DA; Ciosek CP
    J Med Chem; 1996 Feb; 39(3):657-60. PubMed ID: 8576905
    [No Abstract]   [Full Text] [Related]  

  • 17. Formation of dehydrosqualene catalyzed by squalene synthetase in Saccharomyces cerevisiae.
    Takatsuji H; Nishino T; Izui K; Katsuki H
    J Biochem; 1982 Mar; 91(3):911-21. PubMed ID: 7042703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1-Hydroxy-3-(methylpentylamino)-propylidene-1,1-bisphosphonic acid as a potent inhibitor of squalene synthase.
    Amin D; Cornell SA; Perrone MH; Bilder GE
    Arzneimittelforschung; 1996 Aug; 46(8):759-62. PubMed ID: 9125274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of squalene synthetase in the inhibition of tetrahymanol biosynthesis by cholesterol in Tetrahymena pyriformis.
    Warburg CF; Wakeel M; Wilton DC
    Lipids; 1982 Mar; 17(3):230-4. PubMed ID: 6806556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Farnesol-derived dicarboxylic acids in the urine of animals treated with zaragozic acid A or with farnesol.
    Bostedor RG; Karkas JD; Arison BH; Bansal VS; Vaidya S; Germershausen JI; Kurtz MM; Bergstrom JD
    J Biol Chem; 1997 Apr; 272(14):9197-203. PubMed ID: 9083051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.