These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 8497256)
1. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Kroeger PE; Sarge KD; Morimoto RI Mol Cell Biol; 1993 Jun; 13(6):3370-83. PubMed ID: 8497256 [TBL] [Abstract][Full Text] [Related]
2. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Kroeger PE; Morimoto RI Mol Cell Biol; 1994 Nov; 14(11):7592-603. PubMed ID: 7935474 [TBL] [Abstract][Full Text] [Related]
3. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Sarge KD; Zimarino V; Holm K; Wu C; Morimoto RI Genes Dev; 1991 Oct; 5(10):1902-11. PubMed ID: 1717345 [TBL] [Abstract][Full Text] [Related]
4. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation. Christians E; Michel E; Adenot P; Mezger V; Rallu M; Morange M; Renard JP Mol Cell Biol; 1997 Feb; 17(2):778-88. PubMed ID: 9001232 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338 [TBL] [Abstract][Full Text] [Related]
6. c-Myb-induced trans-activation mediated by heat shock elements without sequence-specific DNA binding of c-Myb. Kanei-Ishii C; Yasukawa T; Morimoto RI; Ishii S J Biol Chem; 1994 Jun; 269(22):15768-75. PubMed ID: 8195231 [TBL] [Abstract][Full Text] [Related]
7. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264 [TBL] [Abstract][Full Text] [Related]
8. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions. Fernandes M; Xiao H; Lis JT Nucleic Acids Res; 1994 Jan; 22(2):167-73. PubMed ID: 8121800 [TBL] [Abstract][Full Text] [Related]
9. Interactions between DNA-bound trimers of the yeast heat shock factor. Bonner JJ; Ballou C; Fackenthal DL Mol Cell Biol; 1994 Jan; 14(1):501-8. PubMed ID: 8264619 [TBL] [Abstract][Full Text] [Related]
10. Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Abravaya K; Phillips B; Morimoto RI Mol Cell Biol; 1991 Jan; 11(1):586-92. PubMed ID: 1986252 [TBL] [Abstract][Full Text] [Related]
11. Differential recognition of heat shock elements by members of the heat shock transcription factor family. Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318 [TBL] [Abstract][Full Text] [Related]
12. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro. Amin J; Fernandez M; Ananthan J; Lis JT; Voellmy R J Biol Chem; 1994 Feb; 269(7):4804-11. PubMed ID: 8106450 [TBL] [Abstract][Full Text] [Related]
13. Interaction of the DNA-binding domain of Drosophila heat shock factor with its cognate DNA site: a thermodynamic analysis using analytical ultracentrifugation. Kim SJ; Tsukiyama T; Lewis MS; Wu C Protein Sci; 1994 Jul; 3(7):1040-51. PubMed ID: 7920249 [TBL] [Abstract][Full Text] [Related]
14. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1. Sakurai H; Takemori Y J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150 [TBL] [Abstract][Full Text] [Related]
15. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587 [TBL] [Abstract][Full Text] [Related]
16. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Zuo J; Baler R; Dahl G; Voellmy R Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471 [TBL] [Abstract][Full Text] [Related]
17. Modular recognition of 5-base-pair DNA sequence motifs by human heat shock transcription factor. Cunniff NF; Wagner J; Morgan WD Mol Cell Biol; 1991 Jul; 11(7):3504-14. PubMed ID: 1904540 [TBL] [Abstract][Full Text] [Related]
18. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain. Drees BL; Grotkopp EK; Nelson HC J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746 [TBL] [Abstract][Full Text] [Related]
19. Methylation-associated transcriptional silencing of the major histocompatibility complex-linked hsp70 genes in mouse cell lines. Gorzowski JJ; Eckerley CA; Halgren RG; Mangurten AB; Phillips B J Biol Chem; 1995 Nov; 270(45):26940-9. PubMed ID: 7592940 [TBL] [Abstract][Full Text] [Related]
20. Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1. Bouchier-Hayes L; McBride S; van Geelen CM; Nance S; Lewis LK; Pinkoski MJ; Beere HM Cell Death Differ; 2010 Jun; 17(6):1034-46. PubMed ID: 20150914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]