These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 849743)

  • 1. Structure and synthesis of a lipid-containing bacteriophage. Effects of lipids containing cis or trans fatty acids on the reconstitution of bacteriophage PM2.
    Tsukagoshi N; Schäfer R; Franklin RM
    Eur J Biochem; 1977 Mar; 73(2):469-76. PubMed ID: 849743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and synthesis of a lipid-containing bacteriophage. Total reconstitution of bacteriophage PM2 in vitro.
    Schäfer R; Franklin RM
    Eur J Biochem; 1978 Dec; 92(2):589-96. PubMed ID: 738281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and assembly of lipid-containing viruses, with special reference to bacteriophage PM2 as one type of model system.
    Franklin RM; Hinnen R; Schäfer R; Tsukagoshi N
    Philos Trans R Soc Lond B Biol Sci; 1976 Nov; 276(943):63-80. PubMed ID: 13436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid metabolism in Pseudomonas BAL-31 infected with lipid-containing bacteriophage PM2.
    Diedrich DL; Cota-Robles EH
    J Virol; 1976 Aug; 19(2):446-56. PubMed ID: 957479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipid-containing bacteriophage PR4. Effects of altered lipid composition on the virion.
    Muller ED; Cronan JE
    J Mol Biol; 1983 Mar; 165(1):109-24. PubMed ID: 6341607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae to modify the lipid composition and function of mitochondrial membranes.
    Tung BS; Unger ER; Levin B; Brasitus TA; Getz GS
    J Lipid Res; 1991 Jun; 32(6):1025-38. PubMed ID: 1940618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transitions in the membrane of a marine bacterium, Pseudomonas BAL-31.
    Tsukagoshi N; Petersen MH; Huber U; Franklin RM; Seelig J
    Eur J Biochem; 1976 Feb; 62(2):257-62. PubMed ID: 176027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and synthesis of a lipid-containing bacteriophage. XVIII. Modification of the lipid composition in bacteriophage PM2.
    Tsukagoshi N; Petersen MH; Franklin RM
    Virology; 1975 Jul; 66(1):206-16. PubMed ID: 237363
    [No Abstract]   [Full Text] [Related]  

  • 9. Incorporation of the dietary trans fatty acid (C18:1) into the serum lipids, the serum lipoproteins and adipose tissue.
    Schrock CG; Connor WE
    Am J Clin Nutr; 1975 Sep; 28(9):1020-7. PubMed ID: 169685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of the cis-trans-unsaturated fatty acid isomerase of Pseudomonas oleovorans GPo12.
    Pedrotta V; Witholt B
    J Bacteriol; 1999 May; 181(10):3256-61. PubMed ID: 10322030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and synthesis of a lipid-containing bacteriophage. XII. The fatty acids and lipid content of bacteriophage PM2.
    Camerini-Otero RD; Franklin RM
    Virology; 1972 Aug; 49(2):385-93. PubMed ID: 4559686
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of unsaturated fatty acids on the lipid composition of bacteriophage PM2.
    Tsukagoshi N; Petersen MH; Franklin RM
    Nature; 1975 Jan; 253(5487):125-6. PubMed ID: 1110757
    [No Abstract]   [Full Text] [Related]  

  • 13. [Comparison of mean-term physiological effects of cis and trans docosenoic acids in the rat. II. Effects on the lipids and fatty acids of plasma, adipose tissue, liver and heart].
    Astorg PO; Compoint G
    Ann Nutr Aliment; 1979; 33(5):659-86. PubMed ID: 552220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans unsaturated fatty acids are less oxidizable than cis unsaturated fatty acids and protect endogenous lipids from oxidation in lipoproteins and lipid bilayers.
    Sargis RM; Subbaiah PV
    Biochemistry; 2003 Oct; 42(39):11533-43. PubMed ID: 14516205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacement of the aliphatic chains of Clostridium acetobutylicum by exogenous fatty acids: regulation of phospholipid and glycolipid composition.
    Johnston NC; Goldfine H
    J Bacteriol; 1992 Mar; 174(6):1848-53. PubMed ID: 1548233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid composition and chemotaxonomy of Pseudomonas putrefaciens (Alteromonas putrefaciens).
    Wilkinson SG; Caudwell PF
    J Gen Microbiol; 1980 Jun; 118(2):329-41. PubMed ID: 7441198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycerol deprivation on the phospholipid metabolism of a glycerol auxotroph of Staphylococcus aureus.
    Ray PH; White DC
    J Bacteriol; 1972 Feb; 109(2):668-77. PubMed ID: 5058448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and synthesis of a lipid-containing bacteriophage. Dissociation of bacteriophage PM2 into its morphological subunits.
    Schäfer R; Künzler P; Lustig A; Franklin RM
    Eur J Biochem; 1978 Dec; 92(2):579-88. PubMed ID: 738280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens.
    Cullen J; Phillips MC; Shipley GG
    Biochem J; 1971 Dec; 125(3):733-42. PubMed ID: 5004336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells.
    Yamashita A; Sugiura T; Waku K
    J Biochem; 1997 Jul; 122(1):1-16. PubMed ID: 9276665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.