These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 8497488)

  • 81. Pairwise contact energy statistical potentials can help to find probability of point mutations.
    Saravanan KM; Suvaithenamudhan S; Parthasarathy S; Selvaraj S
    Proteins; 2017 Jan; 85(1):54-64. PubMed ID: 27761949
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Semiempirical prediction of protein folds.
    Fernández A; Colubri A; Appignanesi G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021901. PubMed ID: 11497614
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An automatic search for similar spatial arrangements of alpha-helices and beta-strands in globular proteins.
    Abagyan RA; Maiorov VN
    J Biomol Struct Dyn; 1989 Jun; 6(6):1045-60. PubMed ID: 2818856
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Folding proteins with a simple energy function and extensive conformational searching.
    Yue K; Dill KA
    Protein Sci; 1996 Feb; 5(2):254-61. PubMed ID: 8745403
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Identification and ab initio simulations of early folding units in proteins.
    Gilis D; Rooman M
    Proteins; 2001 Feb; 42(2):164-76. PubMed ID: 11119640
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Validity of Gō models: comparison with a solvent-shielded empirical energy decomposition.
    Paci E; Vendruscolo M; Karplus M
    Biophys J; 2002 Dec; 83(6):3032-8. PubMed ID: 12496075
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A simple qualitative representation of polypeptide chain folds: comparison of protein tertiary structures.
    Abagyan RA; Maiorov VN
    J Biomol Struct Dyn; 1988 Jun; 5(6):1267-79. PubMed ID: 3271511
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A measure of success in fold recognition.
    Marchler-Bauer A; Bryant SH
    Trends Biochem Sci; 1997 Jul; 22(7):236-40. PubMed ID: 9255062
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Reduced alphabet of prebiotic amino acids optimally encodes the conformational space of diverse extant protein folds.
    Solis AD
    BMC Evol Biol; 2019 Jul; 19(1):158. PubMed ID: 31362700
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A retrospective analysis of CASP2 threading predictions.
    Marchler-Bauer A; Levitt M; Bryant SH
    Proteins; 1997; Suppl 1():83-91. PubMed ID: 9485499
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Steric constraints as folding coadjuvant.
    Tarragó ME; Rocha LF; DaSilva RA; Caliri A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031901. PubMed ID: 12689095
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A pairwise residue contact area-based mean force potential for discrimination of native protein structure.
    Arab S; Sadeghi M; Eslahchi C; Pezeshk H; Sheari A
    BMC Bioinformatics; 2010 Jan; 11():16. PubMed ID: 20064218
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Factors affecting the ability of energy functions to discriminate correct from incorrect folds.
    Park BH; Huang ES; Levitt M
    J Mol Biol; 1997 Mar; 266(4):831-46. PubMed ID: 9102472
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Simultaneous modeling of multiple loops in proteins.
    Rosenbach D; Rosenfeld R
    Protein Sci; 1995 Mar; 4(3):496-505. PubMed ID: 7540907
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A contact energy function considering residue hydrophobic environment and its application in protein fold recognition.
    Duan MJ; Zhou YH
    Genomics Proteomics Bioinformatics; 2005 Nov; 3(4):218-24. PubMed ID: 16689689
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Protein threading by PROSPECT: a prediction experiment in CASP3.
    Xu Y; Xu D; Crawford OH; Einstein ; Larimer F; Uberbacher E; Unseren MA; Zhang G
    Protein Eng; 1999 Nov; 12(11):899-907. PubMed ID: 10585495
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Computational studies of protein folding.
    Friesner RA; Gunn JR
    Annu Rev Biophys Biomol Struct; 1996; 25():315-42. PubMed ID: 8800473
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Analyses of the folding sites of irregular β-trefoil fold proteins through sequence-based techniques and Gō-model simulations.
    Kimura R; Aumpuchin P; Hamaue S; Shimomura T; Kikuchi T
    BMC Mol Cell Biol; 2020 Apr; 21(1):28. PubMed ID: 32295515
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Application of PROSPECT in CASP4: characterizing protein structures with new folds.
    Xu D; Crawford OH; LoCascio PF; Xu Y
    Proteins; 2001; Suppl 5():140-8. PubMed ID: 11835491
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Protein folding simulation with genetic algorithm and supersecondary structure constraints.
    Cui Y; Chen RS; Wong WH
    Proteins; 1998 May; 31(3):247-57. PubMed ID: 9593196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.