These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 8498091)
1. Comparative sulphoxidation of albendazole by sheep and cattle liver microsomes and the inhibitory effect of methimazole. Lanusse CE; Nare B; Prichard RK Xenobiotica; 1993 Mar; 23(3):285-95. PubMed ID: 8498091 [TBL] [Abstract][Full Text] [Related]
2. Comparative hepatic and extrahepatic enantioselective sulfoxidation of albendazole and fenbendazole in sheep and cattle. Virkel G; Lifschitz A; Sallovitz J; Pis A; Lanusse C Drug Metab Dispos; 2004 May; 32(5):536-44. PubMed ID: 15100176 [TBL] [Abstract][Full Text] [Related]
3. Liver sulphoxidative metabolism of albendazole in rat: enantioselectivity and effect of methimazole. Solana HD; Sallovitz JM; Najle R; Rodriguez JA; Lanusse CE Methods Find Exp Clin Pharmacol; 2000 Mar; 22(2):83-8. PubMed ID: 10849890 [TBL] [Abstract][Full Text] [Related]
4. Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes. Rawden HC; Kokwaro GO; Ward SA; Edwards G Br J Clin Pharmacol; 2000 Apr; 49(4):313-22. PubMed ID: 10759686 [TBL] [Abstract][Full Text] [Related]
5. Enantioselective liver microsomal sulphoxidation of albendazole in cattle: effect of nutritional status. Virkel G; Lifschitz A; Soraci A; Sansinanea A; Lanusse C Xenobiotica; 2000 Apr; 30(4):381-93. PubMed ID: 10821167 [TBL] [Abstract][Full Text] [Related]
6. Methimazole-mediated modulation of netobimin biotransformation in sheep: a pharmacokinetic assessment. Lanusse CE; Gascon L; Prichard RK J Vet Pharmacol Ther; 1992 Sep; 15(3):267-74. PubMed ID: 1433490 [TBL] [Abstract][Full Text] [Related]
7. Liver microsomal biotransformation of albendazole in deer, cattle, sheep and pig and some related wild breeds. Velík J; Baliharová V; Skálová L; Szotáková B; Wsól V; Lamka J J Vet Pharmacol Ther; 2005 Aug; 28(4):377-84. PubMed ID: 16050818 [TBL] [Abstract][Full Text] [Related]
8. Methimazole increases the plasma concentrations of the albendazole metabolites of netobimin in sheep. Lanusse CE; Prichard RK Biopharm Drug Dispos; 1992 Mar; 13(2):95-103. PubMed ID: 1550912 [TBL] [Abstract][Full Text] [Related]
9. Methimazole-mediated enhancement of albendazole oral bioavailability and anthelmintic effects against parenteral stages of Trichinella spiralis in mice: the influence of the dose-regime. López-García ML; Torrado S; Torrado S; Martínez AR; Bolás F Vet Parasitol; 1998 Feb; 75(2-3):209-19. PubMed ID: 9637222 [TBL] [Abstract][Full Text] [Related]
10. Small intestinal sulphoxidation of albendazole. Villaverde C; Alvarez AI; Redondo P; Voces J; Del Estal JL; Prieto JG Xenobiotica; 1995 May; 25(5):433-41. PubMed ID: 7571717 [TBL] [Abstract][Full Text] [Related]
11. Metabolism of albendazole and albendazole sulphoxide by ruminal and intestinal fluids of sheep and cattle. Lanusse CE; Nare B; Gascon LH; Prichard RK Xenobiotica; 1992 Apr; 22(4):419-26. PubMed ID: 1523862 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of the plasma concentration of albendazole sulphoxide in sheep following coadministration of parenteral netobimin and liver oxidase inhibitors. Lanusse CE; Prichard RK Res Vet Sci; 1991 Nov; 51(3):306-12. PubMed ID: 1780586 [TBL] [Abstract][Full Text] [Related]
13. Effects of methimazole on the kinetics of netobimin metabolites in cattle. Lanusse CE; Prichard RK Xenobiotica; 1992 Jan; 22(1):115-23. PubMed ID: 1615702 [TBL] [Abstract][Full Text] [Related]
14. Sulphoxidation of albendazole by the FAD-containing and cytochrome P-450 dependent mono-oxygenases from pig liver microsomes. el Amri HS; Fargetton X; Delatour P; Batt AM Xenobiotica; 1987 Oct; 17(10):1159-68. PubMed ID: 3424864 [TBL] [Abstract][Full Text] [Related]
15. Assessment of liver slices for research on metabolic drug-drug interactions in cattle. Viviani P; Lifschitz AL; García JP; Maté ML; Quiroga MA; Lanusse CE; Virkel GL Xenobiotica; 2017 Nov; 47(11):933-942. PubMed ID: 27766920 [TBL] [Abstract][Full Text] [Related]
16. Plasma disposition and faecal excretion of netobimin metabolites and enantiospecific disposition of albendazole sulphoxide produced in ewes. Gokbulut C; Cirak VY; Senlik B Vet Res Commun; 2006 Oct; 30(7):791-805. PubMed ID: 17004041 [TBL] [Abstract][Full Text] [Related]
17. Hepatic biotransformation pathways and ruminal metabolic stability of the novel anthelmintic monepantel in sheep and cattle. Ballent M; Virkel G; Maté L; Viviani P; Lanusse C; Lifschitz A J Vet Pharmacol Ther; 2016 Oct; 39(5):488-96. PubMed ID: 26923886 [TBL] [Abstract][Full Text] [Related]
18. Modified plasma and abomasal disposition of albendazole in nematode-infected sheep. Alvarez LI; Sánchez SF; Lanusse CE Vet Parasitol; 1997 May; 69(3-4):241-53. PubMed ID: 9195734 [TBL] [Abstract][Full Text] [Related]
19. Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Solana HD; Rodriguez JA; Lanusse CE Parasitol Res; 2001 Apr; 87(4):275-80. PubMed ID: 11355675 [TBL] [Abstract][Full Text] [Related]
20. In vivo and ex vivo uptake of albendazole and its sulphoxide metabolite by cestode parasites: relationship with their kinetic behaviour in sheep. Alvarez LI; Sánchez SF; Lanusse CE J Vet Pharmacol Ther; 1999 Apr; 22(2):77-86. PubMed ID: 10372592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]