These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 8498475)

  • 21. Effect of cromakalim on contractions in rabbit isolated renal artery in the presence and absence of extracellular Ca2+.
    Wilson C; Cooper SM
    Br J Pharmacol; 1989 Dec; 98(4):1303-11. PubMed ID: 2575415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Ca2+-activated K+ channel from rabbit aorta: modulation by cromakalim.
    Gelband CH; Lodge NJ; Van Breemen C
    Eur J Pharmacol; 1989 Aug; 167(2):201-10. PubMed ID: 2591475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide.
    Grover GJ; McCullough JR; Henry DE; Conder ML; Sleph PG
    J Pharmacol Exp Ther; 1989 Oct; 251(1):98-104. PubMed ID: 2507775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle.
    Standen NB; Quayle JM; Davies NW; Brayden JE; Huang Y; Nelson MT
    Science; 1989 Jul; 245(4914):177-80. PubMed ID: 2501869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The resistance of some rat cerebral arteries to the vasorelaxant effect of cromakalim and other K+ channel openers.
    McPherson GA; Stork AP
    Br J Pharmacol; 1992 Jan; 105(1):51-8. PubMed ID: 1534504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. KATP-channel-induced vasodilation is modulated by the Na,K-pump activity in rabbit coronary small arteries.
    Glavind-Kristensen M; Matchkov V; Hansen VB; Forman A; Nilsson H; Aalkjaer C
    Br J Pharmacol; 2004 Dec; 143(7):872-80. PubMed ID: 15504751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of pinacidil on K+ channels in human coronary artery vascular smooth muscle cells.
    Bychkov R; Gollasch M; Ried C; Luft FC; Haller H
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C161-71. PubMed ID: 9252453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epithelium-dependent inhibition of cholinergic transmission in rat isolated trachea by potassium channel openers.
    Fabiani ME; Vlahos R; Story DF
    Pharmacol Res; 1996; 33(4-5):261-72. PubMed ID: 8938019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones.
    Sellers AJ; Boden PR; Ashford ML
    Br J Pharmacol; 1992 Dec; 107(4):1068-74. PubMed ID: 1467829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative effects of K+ channel blockade on the vasorelaxant activity of cromakalim, pinacidil and nicorandil.
    Wilson C; Coldwell MC; Howlett DR; Cooper SM; Hamilton TC
    Eur J Pharmacol; 1988 Aug; 152(3):331-9. PubMed ID: 2851450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of cromakalim, pinacidil and glibenclamide on cholinergic transmission in rat isolated atria.
    Fabiani ME; Story DF
    Pharmacol Res; 1995 Sep; 32(3):155-63. PubMed ID: 8745346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cromakalim and pinacidil dilate small mesenteric arteries but not small cerebral arteries.
    McCarron JG; Quayle JM; Halpern W; Nelson MT
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H287-91. PubMed ID: 1908639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. K(+)-channel openers for relaxation of isolated penile erectile tissue from rabbit.
    Holmquist F; Andersson KE; Fovaeus M; Hedlund H
    J Urol; 1990 Jul; 144(1):146-51. PubMed ID: 2359166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two types of ATP-sensitive potassium channels in rat portal vein smooth muscle cells.
    Zhang HL; Bolton TB
    Br J Pharmacol; 1996 May; 118(1):105-14. PubMed ID: 8733582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A glibenclamide sensitive potassium conductance in terminal arterioles isolated from guinea pig heart.
    Klieber HG; Daut J
    Cardiovasc Res; 1994 Jun; 28(6):823-30. PubMed ID: 7923286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide.
    Quast U; Cook NS
    J Pharmacol Exp Ther; 1989 Jul; 250(1):261-71. PubMed ID: 2501478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypoglycemic sulfonylureas antagonize the effects of cromakalim and pinacidil on 86Rb fluxes and contractile activity in the rat aorta.
    Lebrun P; Fang ZY; Antoine MH; Herchuelz A; Hermann M; Berkenboom G; Fontaine J
    Pharmacology; 1990; 41(1):36-48. PubMed ID: 2122482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein.
    Kamouchi M; Kitamura K
    Am J Physiol; 1994 May; 266(5 Pt 2):H1687-98. PubMed ID: 8203568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of KRN2391, a novel vasodilator, compared with those of cromakalim, pinacidil and nifedipine in rat aorta.
    Kashiwabara T; Nakajima S; Izawa T; Fukushima H; Nishikori K
    Eur J Pharmacol; 1991 Apr; 196(1):1-7. PubMed ID: 1678711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.