BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1315 related articles for article (PubMed ID: 8498480)

  • 1. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of ATP-sensitive potassium currents in guinea-pig gall-bladder smooth muscle by the neuropeptide CGRP.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    J Physiol; 1994 Aug; 478 Pt 3(Pt 3):483-91. PubMed ID: 7965858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive K+ current and its modulation by substance P in gastric myocytes isolated from guinea pig.
    Jun JY; Yeum CH; Yoon PJ; Chang IY; Kim SJ; Kim KW
    Eur J Pharmacol; 1998 Sep; 358(1):77-83. PubMed ID: 9809872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell.
    Koh SD; Bradley KK; Rae MG; Keef KD; Horowitz B; Sanders KM
    Biophys J; 1998 Oct; 75(4):1793-800. PubMed ID: 9746521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cromakalim and pinacidil on 86Rb efflux from guinea pig urinary bladder smooth muscle.
    Trivedi S; Stetz S; Levin R; Li J; Kau S
    Pharmacology; 1994 Sep; 49(3):159-66. PubMed ID: 7972330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscarinic inhibition of ATP-sensitive K+ channels by protein kinase C in urinary bladder smooth muscle.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1723-8. PubMed ID: 8279533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zeneca ZD6169 activates ATP-sensitive K+ channels in the urinary bladder of the guinea pig.
    Heppner TJ; Bonev A; Li JH; Kau ST; Nelson MT
    Pharmacology; 1996 Sep; 53(3):170-9. PubMed ID: 8931102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein.
    Beech DJ; Zhang H; Nakao K; Bolton TB
    Br J Pharmacol; 1993 Oct; 110(2):583-90. PubMed ID: 8242233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium channel modulation in rat portal vein by ATP depletion: a comparison with the effects of levcromakalim (BRL 38227).
    Noack T; Edwards G; Deitmer P; Weston AH
    Br J Pharmacol; 1992 Dec; 107(4):945-55. PubMed ID: 1467843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeneca ZD6169 and its analogs from a novel series of anilide tertiary carbinols: in vitro KATP channel opening activity in bladder detrusor.
    Li JH; Yasay GD; Zografos P; Kau ST; Ohnmacht CJ; Russell K; Empfield JR; Brown FJ; Trainor DA; Bonev AD
    Pharmacology; 1995 Jun; 51(1):33-42. PubMed ID: 7568342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the ATP-sensitive potassium channels (KATP) expressed in guinea pig bladder smooth muscle cells.
    Gopalakrishnan M; Whiteaker KL; Molinari EJ; Davis-Taber R; Scott VE; Shieh CC; Buckner SA; Milicic I; Cain JC; Postl S; Sullivan JP; Brioni JD
    J Pharmacol Exp Ther; 1999 Apr; 289(1):551-8. PubMed ID: 10087049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes.
    Teramoto N; McMurray G; Brading AF
    Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells.
    Clapp LH; Gurney AM
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H916-20. PubMed ID: 1558201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes.
    Escande D; Thuringer D; Le Guern S; Courteix J; Laville M; Cavero I
    Pflugers Arch; 1989 Sep; 414(6):669-75. PubMed ID: 2510125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein.
    Kamouchi M; Kitamura K
    Am J Physiol; 1994 May; 266(5 Pt 2):H1687-98. PubMed ID: 8203568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glibenclamide sensitive potassium conductance in terminal arterioles isolated from guinea pig heart.
    Klieber HG; Daut J
    Cardiovasc Res; 1994 Jun; 28(6):823-30. PubMed ID: 7923286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.