BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8498560)

  • 21. Tumor necrosis factor-alpha inhibits endothelium-dependent relaxation.
    Greenberg S; Xie J; Wang Y; Cai B; Kolls J; Nelson S; Hyman A; Summer WR; Lippton H
    J Appl Physiol (1985); 1993 May; 74(5):2394-403. PubMed ID: 8335573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of nitric oxide inhibition on secretion of atrial natriuretic factor in isolated rat heart.
    Melo LG; Sonnenberg H
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H306-11. PubMed ID: 8769765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contractile responses of isolated bovine retinal microarteries to acetylcholine.
    Hoste AM; Andries LJ
    Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):1996-2005. PubMed ID: 2055694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variegated effects of prostaglandins on spontaneous activity in bovine mesenteric lymphatics.
    Ohhashi T; Azuma T
    Microvasc Res; 1984 Jan; 27(1):71-80. PubMed ID: 6143241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of tumour necrosis factor-alpha and interleukin 1beta on endothelium-dependent relaxation in rat mesenteric resistance arteries in vitro.
    Wimalasundera R; Fexby S; Regan L; Thom SA; Hughes AD
    Br J Pharmacol; 2003 Apr; 138(7):1285-94. PubMed ID: 12711629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of acetylcholine and nitric oxide on forearm blood flow at rest and after a single muscle contraction.
    Brock RW; Tschakovsky ME; Shoemaker JK; Halliwill JR; Joyner MJ; Hughson RL
    J Appl Physiol (1985); 1998 Dec; 85(6):2249-54. PubMed ID: 9843549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurotransmission in isolated sheep mesenteric lymphatics.
    Harty HR; Thornbury KD; McHale NG
    Microvasc Res; 1993 Nov; 46(3):310-9. PubMed ID: 7907162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of acetylcholine-induced relaxation in dog external and internal ophthalmic arteries.
    Wang Y; Okamura T; Toda N
    Exp Eye Res; 1993 Sep; 57(3):275-81. PubMed ID: 8224015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibitory Effect of Interferons on Contractive Activity of Bovine Mesenteric Lymphatic Vessels and Nodes.
    Unt DV; Lobov GI
    Bull Exp Biol Med; 2017 Dec; 164(2):123-126. PubMed ID: 29181669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats.
    Liu SF; Crawley DE; Barnes PJ; Evans TW
    Am Rev Respir Dis; 1991 Jan; 143(1):32-7. PubMed ID: 1986681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. L-NMMA in brain microcirculation of mice is inhibited by blockade of cyclooxygenase and by superoxide dismutase.
    Rosenblum WI; Nishimura H; Nelson GH
    Am J Physiol; 1992 May; 262(5 Pt 2):H1343-9. PubMed ID: 1590436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of L-arginine-derived nitric oxide in cholinergic dilation of gastric arterioles.
    Chen RY; Ross G; Chyu KY; Guth PH
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H2110-6. PubMed ID: 8285251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of catecholamines on the spontaneous contractions in bovine mesenteric lymphatics.
    Mawhinney HJ; Roddie IC
    J Physiol; 1971 Dec; 219(2):34P-35P. PubMed ID: 5158392
    [No Abstract]   [Full Text] [Related]  

  • 34. Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway.
    Julou-Schaeffer G; Gray GA; Fleming I; Schott C; Parratt JR; Stoclet JC
    Am J Physiol; 1990 Oct; 259(4 Pt 2):H1038-43. PubMed ID: 2221111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle.
    Kim N; Azadzoi KM; Goldstein I; Saenz de Tejada I
    J Clin Invest; 1991 Jul; 88(1):112-8. PubMed ID: 1647413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Omega-3 polyunsaturated fatty acids augment endothelium-dependent vasorelaxation by enhanced release of EDRF and vasodilator prostaglandins.
    Lawson DL; Mehta JL; Saldeen K; Mehta P; Saldeen TG
    Eicosanoids; 1991; 4(4):217-23. PubMed ID: 1789998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of nitric oxide synthase slows heart rate recovery from cholinergic activation.
    Sears CE; Choate JK; Paterson DJ
    J Appl Physiol (1985); 1998 May; 84(5):1596-603. PubMed ID: 9572804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acetylcholine acutely modifies nitric oxide synthase function in the human coronary circulation.
    Miner SE; Al-Hesayen A; Nield LE; Gori T; Parker JD
    Exp Physiol; 2010 Dec; 95(12):1167-76. PubMed ID: 20817701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of nitric oxide in regulation of vascular resistance in postnatal intestine.
    Nankervis CA; Nowicki PT
    Am J Physiol; 1995 Jun; 268(6 Pt 1):G949-58. PubMed ID: 7611416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blocking effects of alinidine on negative chronotropic and inotropic responses to vagal stimulation and injected acetylcholine and carbachol in dogs.
    Ogiwara Y; Furukawa Y; Takeda M; Chiba S
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1113-20. PubMed ID: 3694527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.