These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 8498587)
1. Evidence that heterogeneity of cerebral blood flow does not involve vascular recruitment. Williams JL; Shea M; Jones SC Am J Physiol; 1993 May; 264(5 Pt 2):H1740-3. PubMed ID: 8498587 [TBL] [Abstract][Full Text] [Related]
2. Importance of freezing time when iodoantipyrine is used for measurement of cerebral blood flow. Williams JL; Shea M; Furlan AJ; Little JR; Jones SC Am J Physiol; 1991 Jul; 261(1 Pt 2):H252-6. PubMed ID: 1858927 [TBL] [Abstract][Full Text] [Related]
3. Local cerebral blood flow during the first hour following acute ligation of multiple arterioles in rat whisker barrel cortex. Wei L; Craven K; Erinjeri J; Liang GE; Bereczki D; Rovainen CM; Woolsey TA; Fenstermacher JD Neurobiol Dis; 1998 Sep; 5(3):142-50. PubMed ID: 9848087 [TBL] [Abstract][Full Text] [Related]
5. Radial columns in autoradiographs generated from tracer methods for measuring cerebral cortical blood flow. Bryan RM; Duckrow RB Am J Physiol; 1995 Aug; 269(2 Pt 2):H583-9. PubMed ID: 7653622 [TBL] [Abstract][Full Text] [Related]
6. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat. Richards HK; Simac S; Piechnik S; Pickard JD J Cereb Blood Flow Metab; 2001 Jul; 21(7):779-81. PubMed ID: 11435789 [TBL] [Abstract][Full Text] [Related]
7. Cerebral blood flow with the indicator fractionation of [14C]iodoantipyrine: effect of PaCO2 on cerebral venous appearance time. Jones SC; Korfali E; Marshall SA J Cereb Blood Flow Metab; 1991 Mar; 11(2):236-41. PubMed ID: 1900067 [TBL] [Abstract][Full Text] [Related]
8. A study of regional distribution of renal blood flow using quantitative autoradiography. Geraghty JG; Nsubuga M; Angerson WJ; Williams NN; Sarazen AA; Dervan PA; Fitzpatrick JM Am J Physiol; 1992 Nov; 263(5 Pt 2):F958-62. PubMed ID: 1443184 [TBL] [Abstract][Full Text] [Related]
9. CO2 reactivity and heterogeneity of cerebral blood flow in ischemic, border zone, and normal cortex. Jones SC; Bose B; Furlan AJ; Friel HT; Easley KA; Meredith MP; Little JR Am J Physiol; 1989 Aug; 257(2 Pt 2):H473-82. PubMed ID: 2504058 [TBL] [Abstract][Full Text] [Related]
10. Direct comparison of local cerebral blood flow rates measured by MRI arterial spin-tagging and quantitative autoradiography in a rat model of experimental cerebral ischemia. Ewing JR; Wei L; Knight RA; Pawa S; Nagaraja TN; Brusca T; Divine GW; Fenstermacher JD J Cereb Blood Flow Metab; 2003 Feb; 23(2):198-209. PubMed ID: 12571451 [TBL] [Abstract][Full Text] [Related]
11. Autoradiographic comparison of thallium-201 diethyldithiocarbamate, isopropyliodoamphetamine and iodoantipyrine as cerebral blood flow tracers. Lear JL; Navarro D J Nucl Med; 1987 Apr; 28(4):481-6. PubMed ID: 3033173 [TBL] [Abstract][Full Text] [Related]
12. Improvement in local cerebral blood flow measurement in gerbil brains by prevention of postmortem diffusion of [14C]iodoantipyrine. Hatakeyama T; Sakaki S; Nakamura K; Furuta S; Matsuoka K J Cereb Blood Flow Metab; 1992 Mar; 12(2):296-300. PubMed ID: 1548302 [TBL] [Abstract][Full Text] [Related]
13. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. Tamura A; Graham DI; McCulloch J; Teasdale GM J Cereb Blood Flow Metab; 1981; 1(1):61-9. PubMed ID: 7328139 [TBL] [Abstract][Full Text] [Related]
14. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats. Nehlig A; Pereira de Vasconcelos A; Boyet S J Cereb Blood Flow Metab; 1989 Oct; 9(5):579-88. PubMed ID: 2777930 [TBL] [Abstract][Full Text] [Related]
15. Flow-independent heterogeneity of brain capillary plasma perfusion after blood exchange with a Newtonian fluid. Vogel J; Waschke KF; Kuschinsky W Am J Physiol; 1997 Apr; 272(4 Pt 2):H1833-7. PubMed ID: 9139970 [TBL] [Abstract][Full Text] [Related]
16. Evolution of microcirculatory disturbances after permanent middle cerebral artery occlusion in rats. Vogel J; Hermes A; Kuschinsky W J Cereb Blood Flow Metab; 1999 Dec; 19(12):1322-8. PubMed ID: 10598936 [TBL] [Abstract][Full Text] [Related]
17. Cerebrovascular effects of nitric oxide manipulation in spontaneously hypertensive rats. Fouyas IP; Kelly PA; Ritchie IM; Whittle IR Br J Pharmacol; 1997 May; 121(1):49-56. PubMed ID: 9146886 [TBL] [Abstract][Full Text] [Related]
18. Nitro-L-arginine attenuates hypercapnic cerebrovasodilation without affecting cerebral metabolism. Iadecola C; Xu X Am J Physiol; 1994 Feb; 266(2 Pt 2):R518-25. PubMed ID: 8141411 [TBL] [Abstract][Full Text] [Related]
19. Quantitative measurement of local cerebral blood flow in the anesthetized mouse using intraperitoneal [14C]iodoantipyrine injection and final arterial heart blood sampling. Maeda K; Mies G; Oláh L; Hossmann KA J Cereb Blood Flow Metab; 2000 Jan; 20(1):10-4. PubMed ID: 10616787 [TBL] [Abstract][Full Text] [Related]
20. Enhanced cerebrovascular responsiveness to hypercapnia following depletion of central serotonergic terminals. Kelly PA; Ritchie IM; McBean DE; Sharkey J; Olverman HJ J Cereb Blood Flow Metab; 1995 Jul; 15(4):706-13. PubMed ID: 7790420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]