These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 849921)

  • 1. Induction of the bioconversion of leucomycins by glucose in a producing strain.
    Omura S; Miyazawa J; Takeshima H; Kitao C; Aizawa M
    J Antibiot (Tokyo); 1977 Feb; 30(2):192-3. PubMed ID: 849921
    [No Abstract]   [Full Text] [Related]  

  • 2. Bioconversion of leucomycins and its regulation by butyrate in a producing strain.
    Omura S; Miyazawa J; Takeshima H; Kitao C; Atsumi K
    J Antibiot (Tokyo); 1976 Oct; 29(10):1131-3. PubMed ID: 994332
    [No Abstract]   [Full Text] [Related]  

  • 3. Microbial transformation of antibiotics. III. Reacylation of 4"-depropionyl maridomycin III into maridomycin V (maridomycin K) by Streptomyces sp. strain no. K-342.
    Uyeda M; Mori S; Morita M; Ogata T; Mori M; Shibata M
    J Antibiot (Tokyo); 1977 Dec; 30(12):1130-1. PubMed ID: 599088
    [No Abstract]   [Full Text] [Related]  

  • 4. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XIII. Regulation of spiramycin I 3-hydroxyl acylase formation by glucose, butyrate, and cerulenin.
    Kitao C; Ikeda H; Hamada H; Omura S
    J Antibiot (Tokyo); 1979 Jun; 32(6):593-9. PubMed ID: 468735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial transformation of antibiotics II. Additional transformation products of maridomycin III.
    Shibata M; Uyeda M; Mori S
    J Antibiot (Tokyo); 1976 Aug; 29(8):824-8. PubMed ID: 993121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microbial transformation of tylosin by the spiramycin-producing strain, Streptomyces ambofaciens KA-1028.
    Omura S; Kitao C; Sadakane N
    J Antibiot (Tokyo); 1980 Aug; 33(8):911-2. PubMed ID: 7429995
    [No Abstract]   [Full Text] [Related]  

  • 7. The enzymatic interconversion between midecamycin A1 and A3.
    Matsuhashi Y; Ogawa H; Nagaoka K
    J Antibiot (Tokyo); 1979 Jul; 32(7):777-9. PubMed ID: 541276
    [No Abstract]   [Full Text] [Related]  

  • 8. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XV. Final steps in the biosynthesis of leucomycins.
    Kitao C; Hamada H; Ikeda H; Omura S
    J Antibiot (Tokyo); 1979 Oct; 32(10):1055-7. PubMed ID: 528366
    [No Abstract]   [Full Text] [Related]  

  • 9. Multistep bioconversion of 20-deoxo-20-dihydro-12,13-deepoxy-12,13-dehydrorosaranolide to 22-hydroxy-23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxy-rosaramicin.
    Lee BK; Puar MS; Patel M; Bartner P; Lotvin J; Munayyer H; Waitz JA
    J Antibiot (Tokyo); 1983 Jun; 36(6):742-4. PubMed ID: 6874596
    [No Abstract]   [Full Text] [Related]  

  • 10. Bioconversion and biosynthesis of 16-membered macrolide antibiotic, tylosin, using enzyme inhibitor: cerulenin.
    Omura S; Kitao C; Miyazawa J; Imai H; Takeshima H
    J Antibiot (Tokyo); 1978 Mar; 31(3):254-6. PubMed ID: 649519
    [No Abstract]   [Full Text] [Related]  

  • 11. I. Isolation and characterization of the transformation products of maridomycin III.
    Shibata M; Uyeda M; Mori S
    J Antibiot (Tokyo); 1975 Jun; 28(6):434-41. PubMed ID: 1150539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450 enzyme RosC catalyzes a multistep oxidation reaction to form the non-active compound 20-carboxyrosamicin.
    Iizaka Y; Takeda R; Senzaki Y; Fukumoto A; Anzai Y
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28582504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic phosphorylation of macrolide antibiotics.
    Wiley PF; Baczynskyj L; Dolak LA; Cialdella JI; Marshall VP
    J Antibiot (Tokyo); 1987 Feb; 40(2):195-201. PubMed ID: 3570968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The platenolides I and II as precursors of turimycin.
    Gräfe U; Fleck WF; Schade W; Reinhardt G; Tresselt D; Thrum H
    J Antibiot (Tokyo); 1980 Jun; 33(6):663-4. PubMed ID: 7419477
    [No Abstract]   [Full Text] [Related]  

  • 15. Hybrid biosynthesis of derivatives of protylonolide and M-4365 by macrolide-producing microorganisms.
    Sadakane N; Tanaka Y; Omura S
    J Antibiot (Tokyo); 1982 Jun; 35(6):680-7. PubMed ID: 7118724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of the macrolide antibiotic tylosin. A preferred pathway from tylactone to tylosin.
    Baltz RH; Seno ET; Stonesifer J; Wild GM
    J Antibiot (Tokyo); 1983 Feb; 36(2):131-41. PubMed ID: 6833128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial O-phosphorylation of macrolide antibiotics.
    Marshall VP; Cialdella JI; Baczynskyj L; Liggett WF; Johnson RA
    J Antibiot (Tokyo); 1989 Jan; 42(1):132-4. PubMed ID: 2921218
    [No Abstract]   [Full Text] [Related]  

  • 18. Microbial transformation of leucomycin A5.
    Singh K; Rakhit S
    J Antibiot (Tokyo); 1979 Jan; 32(1):78-80. PubMed ID: 761994
    [No Abstract]   [Full Text] [Related]  

  • 19. [Pharmacokinetics of turimycin (proceedings)].
    Hoffmann H; Härtl A; Horn U; Fricke H
    Pharmazie; 1979; 34(5-6):341-2. PubMed ID: 515149
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus.
    Vilches C; Hernandez C; Mendez C; Salas JA
    J Bacteriol; 1992 Jan; 174(1):161-5. PubMed ID: 1530845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.