These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 8499393)
1. A new approach to the automatic identification of candidates for ligand receptor sites in proteins: (I). Search for pocket regions. Del Carpio CA; Takahashi Y; Sasaki S J Mol Graph; 1993 Mar; 11(1):23-9, 42. PubMed ID: 8499393 [TBL] [Abstract][Full Text] [Related]
2. Direct determination of vibrational density of states change on ligand binding to a protein. Balog E; Becker T; Oettl M; Lechner R; Daniel R; Finney J; Smith JC Phys Rev Lett; 2004 Jul; 93(2):028103. PubMed ID: 15323955 [TBL] [Abstract][Full Text] [Related]
3. Pharmacophore-based molecular docking to account for ligand flexibility. Joseph-McCarthy D; Thomas BE; Belmarsh M; Moustakas D; Alvarez JC Proteins; 2003 May; 51(2):172-88. PubMed ID: 12660987 [TBL] [Abstract][Full Text] [Related]
4. Fast drug-receptor mapping by site-directed distances: a novel method of predicting new pharmacological leads. Smellie AS; Crippen GM; Richards WG J Chem Inf Comput Sci; 1991 Aug; 31(3):386-92. PubMed ID: 1939396 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints. Constantine KL Biophys J; 2001 Sep; 81(3):1275-84. PubMed ID: 11509344 [TBL] [Abstract][Full Text] [Related]
6. FLOG: a system to select 'quasi-flexible' ligands complementary to a receptor of known three-dimensional structure. Miller MD; Kearsley SK; Underwood DJ; Sheridan RP J Comput Aided Mol Des; 1994 Apr; 8(2):153-74. PubMed ID: 8064332 [TBL] [Abstract][Full Text] [Related]
8. Flexibases: a way to enhance the use of molecular docking methods. Kearsley SK; Underwood DJ; Sheridan RP; Miller MD J Comput Aided Mol Des; 1994 Oct; 8(5):565-82. PubMed ID: 7876901 [TBL] [Abstract][Full Text] [Related]
9. Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH. Meiering EM; Wagner G J Mol Biol; 1995 Mar; 247(2):294-308. PubMed ID: 7707376 [TBL] [Abstract][Full Text] [Related]
11. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry. Cammarata MB; Thyer R; Rosenberg J; Ellington A; Brodbelt JS J Am Chem Soc; 2015 Jul; 137(28):9128-35. PubMed ID: 26125523 [TBL] [Abstract][Full Text] [Related]
12. Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH. Cody V; Luft JR; Pangborn W Acta Crystallogr D Biol Crystallogr; 2005 Feb; 61(Pt 2):147-55. PubMed ID: 15681865 [TBL] [Abstract][Full Text] [Related]
13. Contributions of tryptophan 24 and glutamate 30 to binding long-lived water molecules in the ternary complex of human dihydrofolate reductase with methotrexate and NADPH studied by site-directed mutagenesis and nuclear magnetic resonance spectroscopy. Meiering EM; Li H; Delcamp TJ; Freisheim JH; Wagner G J Mol Biol; 1995 Mar; 247(2):309-25. PubMed ID: 7707377 [TBL] [Abstract][Full Text] [Related]
15. Automated generation of MCSS-derived pharmacophoric DOCK site points for searching multiconformation databases. Joseph-McCarthy D; Alvarez JC Proteins; 2003 May; 51(2):189-202. PubMed ID: 12660988 [TBL] [Abstract][Full Text] [Related]
16. Pocket extraction on proteins via the Voronoi diagram of spheres. Kim D; Cho CH; Cho Y; Ryu J; Bhak J; Kim DS J Mol Graph Model; 2008 Apr; 26(7):1104-12. PubMed ID: 18023220 [TBL] [Abstract][Full Text] [Related]
17. A family competition evolutionary algorithm for automated docking of flexible ligands to proteins. Yang JM; Kao CY IEEE Trans Inf Technol Biomed; 2000 Sep; 4(3):225-37. PubMed ID: 11026593 [TBL] [Abstract][Full Text] [Related]