BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8499455)

  • 61. The KDP ATPase of Escherichia coli.
    Altendorf K; Siebers A; Epstein W
    Ann N Y Acad Sci; 1992 Nov; 671():228-43. PubMed ID: 1288322
    [No Abstract]   [Full Text] [Related]  

  • 62. Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae.
    Wunderli-Ye H; Solioz M
    Biochem Biophys Res Commun; 2001 Jan; 280(3):713-9. PubMed ID: 11162579
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The vanadate-sensitive ATPase of Streptococcus faecalis pumps potassium in a reconstituted system.
    Fürst P; Solioz M
    J Biol Chem; 1986 Mar; 261(9):4302-8. PubMed ID: 2936740
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Crystal structure of the potassium-importing KdpFABC membrane complex.
    Huang CS; Pedersen BP; Stokes DL
    Nature; 2017 Jun; 546(7660):681-685. PubMed ID: 28636601
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Osmoregulation in Bacillus subtilis under potassium limitation: a new inducible K+-stimulated, VO4(3-)-inhibited ATPase.
    Sebestian J; Petrmichlová Z; Sebestianová S; Náprstek J; Svobodová J
    Can J Microbiol; 2001 Dec; 47(12):1116-25. PubMed ID: 11822838
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of sodium and lithium ions on the potassium ion transport systems of Escherichia coli.
    Sorensen EN; Rosen BP
    Biochemistry; 1980 Apr; 19(7):1458-62. PubMed ID: 6992866
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Assaying P-Type ATPases Reconstituted in Liposomes.
    Apell HJ; Damnjanovic B
    Methods Mol Biol; 2016; 1377():127-56. PubMed ID: 26695029
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of potassium-dependent Kdp-ATPase expression in the nitrogen-fixing cyanobacterium Anabaena torulosa.
    Alahari A; Ballal A; Apte SK
    J Bacteriol; 2001 Oct; 183(19):5778-81. PubMed ID: 11544245
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif.
    Pezza RJ; Villarreal MA; Montich GG; Argaraña CE
    Nucleic Acids Res; 2002 Nov; 30(21):4700-8. PubMed ID: 12409461
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Energy coupling to active transport in anaerobically grown mutants of Escherichia Coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1976 Mar; 154(3):731-4. PubMed ID: 133673
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1.
    Becher B; Müller V
    J Bacteriol; 1994 May; 176(9):2543-50. PubMed ID: 8169202
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improvement in K+-limited growth rate associated with expression of the N-terminal fragment of one subunit (KdpA) of the multisubunit Kdp transporter in Escherichia coli.
    Sardesai AA; Gowrishankar J
    J Bacteriol; 2001 Jun; 183(11):3515-20. PubMed ID: 11344160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.
    Berger EA
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1514-8. PubMed ID: 4268097
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nicotinic acid transport in Escherichia coli.
    Rowe JJ; Lemmon RD; Tritz GJ
    Microbios; 1985; 44(179-180):169-84. PubMed ID: 2939322
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ion-dependent generation of the electrochemical proton gradient delta muH+ in reconstituted plasma membrane vesicles from the yeast Metschnikowia reukaufii.
    Gläser HU; Höfer M
    Biochim Biophys Acta; 1987 Dec; 905(2):287-94. PubMed ID: 2825781
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Requirement for membrane potential in active transport of glutamine by Escherichia coli.
    Plate CA
    J Bacteriol; 1979 Jan; 137(1):221-5. PubMed ID: 153897
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels.
    Lin BR; Gierasch LM; Jiang C; Tai PC
    J Membr Biol; 2006; 214(2):103-13. PubMed ID: 17530158
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review).
    Bramkamp M; Altendorf K; Greie JC
    Mol Membr Biol; 2007; 24(5-6):375-86. PubMed ID: 17710642
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Potassium transport in Escherichia coli. Evidence for a K+-transport adenosine-5'-triphosphatase.
    Wieczorek L; Altendorf K
    FEBS Lett; 1979 Feb; 98(2):233-6. PubMed ID: 154416
    [No Abstract]   [Full Text] [Related]  

  • 80. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli.
    Altendorf K; Epstein W; Löhmann A
    J Bacteriol; 1986 Apr; 166(1):334-7. PubMed ID: 3514580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.