These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8499455)

  • 101. Solubilization of a functionally active proline carrier from membranes of Escherichia coli with an organic solvent.
    Amanuma H; Motojima K; Yamaguchi A; Anraku Y
    Biochem Biophys Res Commun; 1977 Jan; 74(2):366-73. PubMed ID: 319795
    [No Abstract]   [Full Text] [Related]  

  • 102. ECF locus in Escherichia coli: defect in energization for ATP synthesis and active transport.
    Hong JS
    Methods Enzymol; 1986; 125():180-6. PubMed ID: 3520220
    [No Abstract]   [Full Text] [Related]  

  • 103. Coupling between H+ entry and ATP formation in Escherichia coli.
    Maloney PC
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1496-501. PubMed ID: 29634
    [No Abstract]   [Full Text] [Related]  

  • 104. Active transport of ions across membranes: energetic role of electrostatics and binding site asymmetry.
    Hao MH; Harvey SC
    Biochim Biophys Acta; 1995 Mar; 1234(1):5-14. PubMed ID: 7880859
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Involvement of a membrane potential in the synthesis of ATP by mitochondria.
    Glynn IM
    Nature; 1967 Dec; 216(5122):1318-9. PubMed ID: 6080060
    [No Abstract]   [Full Text] [Related]  

  • 106. Regulation of the glucose phosphotransferase system in Brochothrix thermosphacta by membrane energization.
    Singh SP; Bishop CJ; Vink R; Rogers PJ
    J Bacteriol; 1985 Oct; 164(1):367-78. PubMed ID: 2995314
    [TBL] [Abstract][Full Text] [Related]  

  • 107. ATP synthesis at low proton-motive forces.
    Krulwich TA; Guffanti AA
    Ann N Y Acad Sci; 1982; 402():167-8. PubMed ID: 6220636
    [No Abstract]   [Full Text] [Related]  

  • 108. A bacterial mutant with impaired potassium transport.
    SCHULTZ SG; SOLOMON AK
    Nature; 1960 Aug; 187():802-4. PubMed ID: 14443801
    [No Abstract]   [Full Text] [Related]  

  • 109. Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties.
    Kilbourn BT; Dunitz JD; Pioda LA; Simon W
    J Mol Biol; 1967 Dec; 30(3):559-63. PubMed ID: 5598211
    [No Abstract]   [Full Text] [Related]  

  • 110. Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation.
    Schramke H; Laermann V; Tegetmeyer HE; Brachmann A; Jung K; Altendorf K
    Microbiologyopen; 2017 Jun; 6(3):. PubMed ID: 28097817
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Autoinducers act as biological timers in Vibrio harveyi.
    Anetzberger C; Reiger M; Fekete A; Schell U; Stambrau N; Plener L; Kopka J; Schmitt-Kopplin P; Hilbi H; Jung K
    PLoS One; 2012; 7(10):e48310. PubMed ID: 23110227
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Influence of K+-dependent membrane lipid composition on the expression of the kdpFABC operon in Escherichia coli.
    Schniederberend M; Zimmann P; Bogdanov M; Dowhan W; Altendorf K
    Biochim Biophys Acta; 2010 Jan; 1798(1):32-9. PubMed ID: 19850005
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling.
    Heermann R; Lippert ML; Jung K
    BMC Microbiol; 2009 Jul; 9():133. PubMed ID: 19589130
    [TBL] [Abstract][Full Text] [Related]  

  • 114. The extension of the fourth transmembrane helix of the sensor kinase KdpD of Escherichia coli is involved in sensing.
    Zimmann P; Steinbrügge A; Schniederberend M; Jung K; Altendorf K
    J Bacteriol; 2007 Oct; 189(20):7326-34. PubMed ID: 17704218
    [TBL] [Abstract][Full Text] [Related]  

  • 115. The quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi contains a periplasmically located N terminus.
    Jung K; Odenbach T; Timmen M
    J Bacteriol; 2007 Apr; 189(7):2945-8. PubMed ID: 17259316
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Osmosensing by bacteria: signals and membrane-based sensors.
    Wood JM
    Microbiol Mol Biol Rev; 1999 Mar; 63(1):230-62. PubMed ID: 10066837
    [TBL] [Abstract][Full Text] [Related]  

  • 117. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R; Altendorf K
    Biochim Biophys Acta; 1993 Jun; 1143(1):62-6. PubMed ID: 8499455
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Structure and function of the Kdp-ATPase of Escherichia coli.
    Altendorf K; Gassel M; Puppe W; Möllenkamp T; Zeeck A; Boddien C; Fendler K; Bamberg E; Dröse S
    Acta Physiol Scand Suppl; 1998 Aug; 643():137-46. PubMed ID: 9789555
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli.
    Fendler K; Dröse S; Altendorf K; Bamberg E
    Biochemistry; 1996 Jun; 35(24):8009-17. PubMed ID: 8672505
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli.
    Laimins LA; Rhoads DB; Altendorf K; Epstein W
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3216-9. PubMed ID: 356049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.