BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8499466)

  • 1. Structural domain mapping and phosphorylation of human erythrocyte pallidin (band 4.2).
    Dotimas E; Speicher DW; GuptaRoy B; Cohen CM
    Biochim Biophys Acta; 1993 May; 1148(1):19-29. PubMed ID: 8499466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro phosphorylation of the red blood cell cytoskeleton complex by cyclic AMP-dependent protein kinase from erythrocyte membrane.
    Boivin P; Garbarz M; Dhermy D; Galand C
    Biochim Biophys Acta; 1981 Sep; 647(1):1-6. PubMed ID: 6271204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation sites in human erythrocyte band 3 protein.
    Yannoukakos D; Vasseur C; Piau JP; Wajcman H; Bursaux E
    Biochim Biophys Acta; 1991 Jan; 1061(2):253-66. PubMed ID: 1998697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of a catalytic subunit of an adenosine 3':5'-monophosphate-dependent protein kinase from human erythrocyte membranes.
    Suzuki K; Terao T; Osawa T
    J Biochem; 1981 Jan; 89(1):1-11. PubMed ID: 6260758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies on human spectrin. Comparison of subunits and fragmentation of native spectrin.
    Anderson JM
    J Biol Chem; 1979 Feb; 254(3):939-44. PubMed ID: 762104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased [32P]-phosphorylation of tryptic peptides of erythrocyte spectrin in Duchenne muscular dystrophy.
    Mabry ME; Roses AD
    Muscle Nerve; 1981; 4(6):489-93. PubMed ID: 7311988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human erythrocyte casein kinase II: characterization and phosphorylation of membrane cytoskeletal proteins.
    Wei T; Tao M
    Arch Biochem Biophys; 1993 Nov; 307(1):206-16. PubMed ID: 8239658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of heparin, fibronectin, and laminin on the phosphorylation of basic fibroblast growth factor by protein kinase C and the catalytic subunit of protein kinase A.
    Feige JJ; Bradley JD; Fryburg K; Farris J; Cousens LC; Barr PJ; Baird A
    J Cell Biol; 1989 Dec; 109(6 Pt 1):3105-14. PubMed ID: 2592418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of casein by human erythrocyte membrane-bound protein kinase: competition of casein with endogenous substrates.
    Vickers JD; Brierley J; Rathbone MP
    J Membr Biol; 1979 Aug; 49(2):123-38. PubMed ID: 226708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II.
    Sáez JC; Nairn AC; Czernik AJ; Spray DC; Hertzberg EL; Greengard P; Bennett MV
    Eur J Biochem; 1990 Sep; 192(2):263-73. PubMed ID: 2170122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible identity of a membrane-bound with a soluble cyclic AMP-independent erythrocyte protein kinase that phosphorylates spectrin.
    Erusalimsky JD; Balas N; Milner Y
    Biochim Biophys Acta; 1983 Mar; 756(2):171-81. PubMed ID: 6299373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation and dephosphorylation of spectrin.
    Fairbanks G; Avruch J; Dino JE; Patel VP
    J Supramol Struct; 1978; 9(1):97-112. PubMed ID: 32438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelationships between protein kinases and spectrin phosphorylation in human erythrocytes.
    Clari G; Michielin E; Moret V
    Biochim Biophys Acta; 1981 Jan; 640(1):240-51. PubMed ID: 6260170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The substrate specificity of protein kinases which phosphorylate the alpha subunit of eukaryotic initiation factor 2.
    Proud CG; Colthurst DR; Ferrari S; Pinna LA
    Eur J Biochem; 1991 Feb; 195(3):771-9. PubMed ID: 1671834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lyn-catalyzed Tyr phosphorylation of the transmembrane band-3 protein of human erythrocytes.
    Brunati AM; Bordin L; Clari G; Moret V
    Eur J Biochem; 1996 Sep; 240(2):394-9. PubMed ID: 8841404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pallidin protein in neurodevelopment and its relation to the pathogenesis of schizophrenia.
    Shi Q; Li C; Li K; Liu Q
    Mol Med Rep; 2017 Feb; 15(2):665-672. PubMed ID: 28035416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of protein 4.1 binding to inside-out membrane vesicles by phosphorylation.
    Chao TS; Tao M
    Biochemistry; 1991 Oct; 30(43):10529-35. PubMed ID: 1931975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules.
    Falcón-Pérez JM; Starcevic M; Gautam R; Dell'Angelica EC
    J Biol Chem; 2002 Aug; 277(31):28191-9. PubMed ID: 12019270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrin phosphorylation in senescent rat erythrocytes.
    O'Connell MA; Swislocki NI
    Mech Ageing Dev; 1983 May; 22(1):51-70. PubMed ID: 6312204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of ribonucleotide reductase R2 protein: in vivo and in vitro evidence of a role for p34cdc2 and CDK2 protein kinases.
    Chan AK; Litchfield DW; Wright JA
    Biochemistry; 1993 Nov; 32(47):12835-40. PubMed ID: 8251505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.