These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8499471)

  • 1. DIDS inhibition of deformation-induced cation flux in human erythrocytes.
    Johnson RM; Tang K
    Biochim Biophys Acta; 1993 May; 1148(1):7-14. PubMed ID: 8499471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deoxygenation-induced cation fluxes in sickle cells: II. Inhibition by stilbene disulfonates.
    Joiner CH
    Blood; 1990 Jul; 76(1):212-20. PubMed ID: 2364172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin.
    Jones GS; Knauf PA
    J Gen Physiol; 1985 Nov; 86(5):721-38. PubMed ID: 4067572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the mechanism of passive cation fluxes activated by deoxygenation of sickle cells.
    Joiner CH
    Prog Clin Biol Res; 1987; 240():229-35. PubMed ID: 3615489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ABH blood group antigens in the stimulation of a DIDS-sensitive Ca2+ influx pathway in human erythrocytes by Ulex europaeus agglutinin I and a monoclonal anti A1 antibody.
    Engelmann B; Schumacher U; Duhm J
    Biochim Biophys Acta; 1991 Feb; 1091(3):261-9. PubMed ID: 2001409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the anion exchange protein of Ehrlich cells: a kinetic analysis of the inhibitory effects of 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) and labeling of membrane proteins with 3H-DIDS.
    Jessen F; Sjøholm C; Hoffmann EK
    J Membr Biol; 1986; 92(3):195-205. PubMed ID: 3783658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkali metal cation transport through the human erythrocyte membrane by the anion exchange mechanism.
    Funder J
    Acta Physiol Scand; 1980 Jan; 108(1):31-7. PubMed ID: 7376905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of residual chloride transport in human red blood cells after maximum covalent 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid binding.
    Gasbjerg PK; Funder J; Brahm J
    J Gen Physiol; 1993 May; 101(5):715-32. PubMed ID: 8393066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monensin-induced cation movements in bovine erythrocytes.
    Dixon E
    Life Sci; 1990; 47(1):37-50. PubMed ID: 2388516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes.
    Janas T; Bjerrum PJ; Brahm J; Wieth JO
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C601-6. PubMed ID: 2801916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of drugs through human erythrocyte membranes: pH dependence of drug transport through labeled human erythrocytes in the presence of band 3 protein inhibitor.
    Matsumoto Y; Ohsako M
    J Pharm Sci; 1992 May; 81(5):428-31. PubMed ID: 1403673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anion exchange and anion-cation co-transport systems in mammalian cells.
    Hoffmann EK
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):519-35. PubMed ID: 6130544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of human erythrocyte Band 3 with cytoskeletal components.
    Hsu L; Morrison M
    Arch Biochem Biophys; 1983 Nov; 227(1):31-8. PubMed ID: 6685459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse effects of dansylation of red blood cell membrane on band 3 protein-mediated transport of sulphate and chloride.
    Lepke S; Passow H
    J Physiol; 1982 Jul; 328():27-48. PubMed ID: 6897945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ATP, intracellular calcium and the anion exchange inhibitor DIDS on conductive anion fluxes across the human red cell membrane.
    Bennekou P; Stampe P
    Biochim Biophys Acta; 1988 Jul; 942(1):179-85. PubMed ID: 2454663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between anion exchange and other membrane proteins in rabbit kidney medullary collecting duct cells.
    Janoshazi A; Seifter JL; Solomon AK
    J Membr Biol; 1989 Nov; 112(1):39-49. PubMed ID: 2593138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the water and proton permeabilities across membranes from erythrocyte ghosts.
    Pitterich H; Lawaczeck R
    Biochim Biophys Acta; 1985 Dec; 821(2):233-42. PubMed ID: 2998468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration-dependent effects of disulfonic stilbenes on colonic chloride transport.
    Smith PL; Sullivan SK; McCabe RD
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G44-9. PubMed ID: 3079966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.