These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8499492)

  • 1. Specific dephosphorylation of phosphopeptides by the yeast alkaline phosphatase encoded by PHO8 gene.
    Donella-Deana A; Ostojić S; Pinna LA; Barbarić S
    Biochim Biophys Acta; 1993 Jun; 1177(2):221-8. PubMed ID: 8499492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characteristics of the PHO8 gene encoding repressible alkaline phosphatase in Saccharomyces cerevisiae.
    Kaneko Y; Hayashi N; Toh-e A; Banno I; Oshima Y
    Gene; 1987; 58(1):137-48. PubMed ID: 3319783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific cis-acting sequence for PHO8 expression interacts with PHO4 protein, a positive regulatory factor, in Saccharomyces cerevisiae.
    Hayashi N; Oshima Y
    Mol Cell Biol; 1991 Feb; 11(2):785-94. PubMed ID: 1990283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of phosphopeptides to distinguish between protein phosphatase and acid/alkaline phosphatase activities: opposite specificity toward phosphoseryl/phosphothreonyl substrates.
    Donella-Deana A; Meyer HE; Pinna LA
    Biochim Biophys Acta; 1991 Aug; 1094(1):130-3. PubMed ID: 1653021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).
    Donella-Deana A; Krinks MH; Ruzzene M; Klee C; Pinna LA
    Eur J Biochem; 1994 Jan; 219(1-2):109-17. PubMed ID: 7508382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repressible acid phosphatase from yeast efficiently dephosphorylates in vitro some phosphorylated proteins and peptides.
    Pavlovic B; Brunati AM; Barbaric S; Pinna LA
    Biochem Biophys Res Commun; 1985 Jun; 129(2):350-7. PubMed ID: 3893426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dephosphorylation of synthetic phosphopeptides by protein phosphatase-T, a phosphothreonyl protein phosphatase.
    Deana AD; Marchiori F; Meggio F; Pinna LA
    J Biol Chem; 1982 Aug; 257(15):8565-8. PubMed ID: 6284735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct specificities of repressible acid phosphatase from yeast toward phosphoseryl and phosphotyrosyl phosphopeptides.
    Donella-Deana A; Lopandic K; Barbaric S; Pinna LA
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1202-9. PubMed ID: 2429657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and post-transcriptional control of PHO8 expression by PHO regulatory genes in Saccharomyces cerevisiae.
    Kaneko Y; Tamai Y; Toh-e A; Oshima Y
    Mol Cell Biol; 1985 Jan; 5(1):248-52. PubMed ID: 2984552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae.
    Kaneko Y; Toh-e A; Oshima Y
    Mol Cell Biol; 1982 Feb; 2(2):127-37. PubMed ID: 7050668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast fructose-2,6-bisphosphate 6-phosphatase is encoded by PHO8, the gene for nonspecific repressible alkaline phosphatase.
    Plankert U; Purwin C; Holzer H
    Eur J Biochem; 1991 Feb; 196(1):191-6. PubMed ID: 1848184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A particulate form of alkaline phosphatase in the yeast, Saccharomyces cerevisiae.
    Mitchell JK; Fonzi WA; Wilkerson J; Opheim DJ
    Biochim Biophys Acta; 1981 Feb; 657(2):482-94. PubMed ID: 7011403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of Ca(2+)/calmodulin-dependent protein kinase phosphatase: kinetic studies using synthetic phosphopeptides as model substrates.
    Ishida A; Shigeri Y; Tatsu Y; Endo Y; Kameshita I; Okuno S; Kitani T; Takeuchi M; Yumoto N; Fujisawa H
    J Biochem; 2001 May; 129(5):745-53. PubMed ID: 11328597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dephosphorylation of phosphoproteins of human liver plasma membranes by endogenous and purified liver alkaline phosphatases.
    Chan JR; Stinson RA
    J Biol Chem; 1986 Jun; 261(17):7635-9. PubMed ID: 3011792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic peptides as model substrates for the study of the specificity of the polycation-stimulated protein phosphatases.
    Agostinis P; Goris J; Pinna LA; Marchiori F; Perich JW; Meyer HE; Merlevede W
    Eur J Biochem; 1990 Apr; 189(2):235-41. PubMed ID: 2159874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in Saccharomyces cerevisiae.
    Qiao W; Ellis C; Steffen J; Wu CY; Eide DJ
    Mol Microbiol; 2009 Apr; 72(2):320-34. PubMed ID: 19298366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of protein phosphatase activities in maize seedlings.
    Jagiełło I; Donella-Deana A; Szczegielniak J; Pinna LA; Muszyńska G
    Biochim Biophys Acta; 1992 Mar; 1134(2):129-36. PubMed ID: 1313301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHO8 gene coding alkaline phosphatase of Saccharomyces cerevisiae is involved in polyphosphate metabolism.
    Kizawa K; Aono T; Ohtomo R
    J Gen Appl Microbiol; 2017 Jan; 62(6):297-302. PubMed ID: 27829585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N(omega)-phosphoarginine phosphatase (17 kDa) and alkaline phosphatase as protein arginine phosphatases.
    Kumon A; Kodama H; Kondo M; Yokoi F; Hiraishi H
    J Biochem; 1996 Apr; 119(4):719-24. PubMed ID: 8743574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro modulation of alkaline phosphatase activity of Saccharomyces cerevisiae grown in low or high phosphate medium.
    Fernandes J; Amorim R; Azevedo I; Martins MJ
    Braz J Med Biol Res; 2008 Jan; 41(1):41-6. PubMed ID: 18097498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.