These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8499492)

  • 41. Probing protein phosphatase substrate binding: affinity pull-down of ILKAP phosphatase 2C with phosphopeptides.
    Højlys-Larsen KB; Sørensen KK; Jensen KJ; Gammeltoft S
    Mol Biosyst; 2012 Apr; 8(5):1452-60. PubMed ID: 22348942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.
    Deshimaru S; Miyake Y; Ohmiya T; Tatsu Y; Endo Y; Yumoto N; Toraya T
    J Biochem; 2002 May; 131(5):705-12. PubMed ID: 11983078
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning of an alkaline phosphatase gene from the moderately thermophilic bacterium Meiothermus ruber and characterization of the recombinant enzyme.
    Yurchenko JV; Budilov AV; Deyev SM; Khromov IS; Sobolev AY
    Mol Genet Genomics; 2003 Oct; 270(1):87-93. PubMed ID: 12928867
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry.
    Chang EJ; Archambault V; McLachlin DT; Krutchinsky AN; Chait BT
    Anal Chem; 2004 Aug; 76(15):4472-83. PubMed ID: 15283590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical characterization and deletion analysis of recombinant human protein phosphatase 2C alpha.
    Marley AE; Sullivan JE; Carling D; Abbott WM; Smith GJ; Taylor IW; Carey F; Beri RK
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):801-6. PubMed ID: 9003365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a system for multicopy gene integration in Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Sibirny AA
    J Microbiol Methods; 2016 Jan; 120():44-9. PubMed ID: 26529647
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative Assay of Macroautophagy Using Pho8△60 Assay and GFP-Cleavage Assay in Yeast.
    Araki Y; Kira S; Noda T
    Methods Enzymol; 2017; 588():307-321. PubMed ID: 28237107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphatase activity in Trypanosoma cruzi. Phosphate removal from ATP, phosphorylated proteins and other phosphate compounds.
    Letelier ME; Alliende C; González J; Aldunate J; Repetto Y; Morello A
    Comp Biochem Physiol B; 1986; 85(2):375-80. PubMed ID: 3536280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cloning, sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis.
    Gomez PF; Ingram LO
    FEMS Microbiol Lett; 1995 Jan; 125(2-3):237-45. PubMed ID: 7875572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae.
    Zhan XL; Deschenes RJ; Guan KL
    Genes Dev; 1997 Jul; 11(13):1690-702. PubMed ID: 9224718
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Asparagine-linked carbohydrate does not determine the cellular location of yeast vacuolar nonspecific alkaline phosphatase.
    Clark DW; Tkacz JS; Lampen JO
    J Bacteriol; 1982 Nov; 152(2):865-73. PubMed ID: 6813317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of a synthetic human growth hormone gene in yeast.
    Tokunaga T; Iwai S; Gomi H; Kodama K; Ohtsuka E; Ikehara M; Chisaka O; Matsubara K
    Gene; 1985; 39(1):117-20. PubMed ID: 3908222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yeast permeabilization as a tool for measurement of in situ enzyme activity: localization of alkaline phosphatase.
    Spasova D; Galabova D
    Z Naturforsch C J Biosci; 1998; 53(5-6):347-51. PubMed ID: 9679325
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dephosphorylation of phosphoproteins by Escherichia coli alkaline phosphatase.
    Mellgren RL; Slaughter GR; Thomas JA
    J Biol Chem; 1977 Sep; 252(17):6082-9. PubMed ID: 408347
    [No Abstract]   [Full Text] [Related]  

  • 59. Separation of multiple phosphotyrosyl-and phosphoseryl-protein phosphatases from chicken brain.
    Foulkes JG; Erikson E; Erikson RL
    J Biol Chem; 1983 Jan; 258(1):431-8. PubMed ID: 6294107
    [No Abstract]   [Full Text] [Related]  

  • 60. Hydrolysis of phosphopeptides. 3. The action of alkaline phosphatase preparations from kidney, bone and yeast on O-phosphorylated model compounds.
    Csopak H; Fölsch G; Strid L; Mellander O
    Acta Chem Scand; 1965; 19(7):1575-82. PubMed ID: 5858302
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.