These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 850051)

  • 1. Characterization of the acetyl-chymotrypsin intermediate by 13C nuclear magnetic resonance spectroscopy.
    Niu CH; Shindo H; Cohen JS; Cross M
    J Am Chem Soc; 1977 Apr; 99(9):3161-2. PubMed ID: 850051
    [No Abstract]   [Full Text] [Related]  

  • 2. Steady-state carbon-13 nuclear magnetic resonance spectra of acyl-alpha-chymotrypsin.
    McWhirter RB; Yevsikov V; Klapper MH
    Biochemistry; 1985 Jun; 24(12):3020-3. PubMed ID: 4016084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 13C high-resolution nuclear magnetic resonance studies of enzyme-substrate reactions at equilibrium. Substrate studies of chymotrypsin-N-acetyltyrosine semicarbazide complexes.
    Robillard G; Shaw E; Shulman RG
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2623-6. PubMed ID: 4528121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of a selenium-containing substrate of alpha-chymotrypsin. Selenium-77 nuclear magnetic resonance observation of an acyl-alpha-chymotrypsin intermediate.
    Mullen GP; Dunlap RB; Odom JD
    Biochemistry; 1986 Sep; 25(19):5625-32. PubMed ID: 3778877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex of alpha-chymotrypsin and N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone: structural studies with NMR spectroscopy.
    Liang TC; Abeles RH
    Biochemistry; 1987 Dec; 26(24):7603-8. PubMed ID: 3427096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13c NMR studies of the conformation of N-acetyl-L-tryptophan in its complex with chymotrypsin.
    Rodgers P; Roberts GC
    FEBS Lett; 1973 Nov; 36(3):330-3. PubMed ID: 4763311
    [No Abstract]   [Full Text] [Related]  

  • 7. A study of the relaxation parameters of a 13C-enriched methylene carbon and a 13C-enriched perdeuteromethylene carbon attached to chymotrypsin.
    Malthouse JP; Finucane MD
    Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):649-57. PubMed ID: 1764028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for hemiacetal formation between N-acyl-L-phenylalaninals and alpha-chymotrypsin by cross-saturation nuclear magnetic resonance spectroscopy.
    Chen R; Gorenstein DG; Kennedy WP; Lowe G; Nurse D; Schultz RM
    Biochemistry; 1979 Mar; 18(5):921-6. PubMed ID: 420824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the stabilization of tetrahedral adducts by trypsin and delta-chymotrypsin.
    Finucane MD; Malthouse JP
    Biochem J; 1992 Sep; 286 ( Pt 3)(Pt 3):889-900. PubMed ID: 1417749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton and fluorine nuclear magnetic resonance spectroscopic observation of hemiacetal formation between N-acyl-p-fluorophenylalaninals and alpha-chymotrypsin.
    Gorenstein DG; Shah DO
    Biochemistry; 1982 Sep; 21(19):4679-86. PubMed ID: 7138821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of 13C n.m.r. and saturation transfer to detect tetrahedral intermediates in reactions catalysed by chymotrypsin and also in an amide inhibitor complex.
    O'Connell TP; Finucane MD; Malthouse JP
    Biochem Soc Trans; 1994 Feb; 22(1):30S. PubMed ID: 8206252
    [No Abstract]   [Full Text] [Related]  

  • 12. Inactivation of chymotrypsin by 5-benzyl-6-chloro-2-pyrone: 13C NMR and X-ray diffraction analyses of the inactivator-enzyme complex.
    Ringe D; Seaton BA; Gelb MH; Abeles RH
    Biochemistry; 1985 Jan; 24(1):64-8. PubMed ID: 3994973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multinuclear magnetic resonance studies on the calcium (II) binding site in trypsin, chymotrypsin, and subtilisin.
    Adebodun F; Jordan F
    Biochemistry; 1989 Sep; 28(19):7524-31. PubMed ID: 2692702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.
    Iida K; Hidoh O; Fukami J; Kajiwara M
    Chem Pharm Bull (Tokyo); 1991 Jan; 39(1):210-3. PubMed ID: 2049803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of a bioluminogenic substrate for alpha-chymotrypsin.
    Monsees T; Miska W; Geiger R
    Anal Biochem; 1994 Sep; 221(2):329-34. PubMed ID: 7810874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear magnetic resonance studies of the interaction of tryptophan with alpha-chymotrypsin.
    Gerig JT
    J Am Chem Soc; 1968 May; 90(10):2681-6. PubMed ID: 5646893
    [No Abstract]   [Full Text] [Related]  

  • 17. Labeling of the active site of alpha-chymotrypsin with N-nitroso-N-benzylacetamide and related compounds.
    Li M; Roswell DF; White EH
    Biochem Biophys Res Commun; 1993 Oct; 196(2):907-13. PubMed ID: 8240368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance studies of p-fluorocinnamate--alpha-chymotrypsin complexes.
    Gerig JT; Halley BA; Ortiz CE
    J Am Chem Soc; 1977 Sep; 99(19):6219-26. PubMed ID: 893888
    [No Abstract]   [Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies of the interaction of trans-cnnamate with alpha-chymotrypsin.
    Gerig JT; Reinheimer JD
    J Am Chem Soc; 1970 May; 92(10):3146-50. PubMed ID: 5446954
    [No Abstract]   [Full Text] [Related]  

  • 20. Nuclear magnetic resonance studies of the interaction of N-acetyltryptophan with -chymotrypsin.
    Gerig JT; Rimerman RA
    J Am Chem Soc; 1972 Oct; 94(21):7565-9. PubMed ID: 5072870
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.