These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 8501041)
1. Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. Wang X; Falcone DL; Tabita FR J Bacteriol; 1993 Jun; 175(11):3372-9. PubMed ID: 8501041 [TBL] [Abstract][Full Text] [Related]
2. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides. Paoli GC; Tabita FR Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598 [TBL] [Abstract][Full Text] [Related]
3. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. Wang X; Modak HV; Tabita FR J Bacteriol; 1993 Nov; 175(21):7109-14. PubMed ID: 8226655 [TBL] [Abstract][Full Text] [Related]
4. Roles of CfxA, CfxB, and external electron acceptors in regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase expression in Rhodobacter sphaeroides. Hallenbeck PL; Lerchen R; Hessler P; Kaplan S J Bacteriol; 1990 Apr; 172(4):1736-48. PubMed ID: 2108123 [TBL] [Abstract][Full Text] [Related]
5. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. Falcone DL; Tabita FR J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547 [TBL] [Abstract][Full Text] [Related]
6. Interaction between ribulose 1,5-bisphosphate carboxylase/oxygenase activity and the ammonia assimilatory system of Rhodobacter sphaeroides. Wang X; Tabita FR J Bacteriol; 1992 Jun; 174(11):3601-6. PubMed ID: 1350584 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. Gibson JL; Dubbs JM; Tabita FR J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354 [TBL] [Abstract][Full Text] [Related]
8. Reversible inactivation and characterization of purified inactivated form I ribulose 1,5-bisphosphate carboxylase/oxygenase of Rhodobacter sphaeroides. Wang X; Tabita FR J Bacteriol; 1992 Jun; 174(11):3593-600. PubMed ID: 1592814 [TBL] [Abstract][Full Text] [Related]
9. Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides. Falcone DL; Tabita FR J Bacteriol; 1991 Mar; 173(6):2099-108. PubMed ID: 1900508 [TBL] [Abstract][Full Text] [Related]
10. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. Gibson JL; Tabita FR J Bacteriol; 1993 Sep; 175(18):5778-84. PubMed ID: 8376325 [TBL] [Abstract][Full Text] [Related]
11. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. Hernandez JM; Baker SH; Lorbach SC; Shively JM; Tabita FR J Bacteriol; 1996 Jan; 178(2):347-56. PubMed ID: 8550452 [TBL] [Abstract][Full Text] [Related]
12. Expression of glnB and a glnB-like gene (glnK) in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant of Rhodobacter sphaeroides. Qian Y; Tabita FR J Bacteriol; 1998 Sep; 180(17):4644-9. PubMed ID: 9721307 [TBL] [Abstract][Full Text] [Related]
13. Transposon mutagenesis and physiological analysis of strains containing inactivated form I and form II ribulose bisphosphate carboxylase/oxygenase genes in Rhodobacter sphaeroides. Falcone DL; Quivey RG; Tabita FR J Bacteriol; 1988 Jan; 170(1):5-11. PubMed ID: 2826406 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. Finn MW; Tabita FR J Bacteriol; 2003 May; 185(10):3049-59. PubMed ID: 12730164 [TBL] [Abstract][Full Text] [Related]
15. Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Ivanovsky RN; Fal YI; Berg IA; Ugolkova NV; Krasilnikova EN; Keppen OI; Zakharchuc LM; Zyakun AM Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1743-1748. PubMed ID: 10439413 [TBL] [Abstract][Full Text] [Related]
16. In vivo regulation of form I ribulose 1,5-bisphosphate carboxylase/oxygenase from Rhodopseudomonas sphaeroides. Jouanneau Y; Tabita FR Arch Biochem Biophys; 1987 Apr; 254(1):290-303. PubMed ID: 3107471 [TBL] [Abstract][Full Text] [Related]
17. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Tichi MA; Tabita FR Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022 [TBL] [Abstract][Full Text] [Related]
18. Isolation of plasmid DNA sequences that complement Rhodobacter sphaeroides mutants deficient in the capacity for CO2-dependent growth. Rainey AM; Tabita FR J Gen Microbiol; 1989 Jun; 135(6):1699-713. PubMed ID: 2515249 [TBL] [Abstract][Full Text] [Related]
19. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Henard CA; Wu C; Xiong W; Henard JM; Davidheiser-Kroll B; Orata FD; Guarnieri MT Appl Environ Microbiol; 2021 Aug; 87(18):e0088121. PubMed ID: 34288705 [TBL] [Abstract][Full Text] [Related]
20. Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides. Hallenbeck PL; Lerchen R; Hessler P; Kaplan S J Bacteriol; 1990 Apr; 172(4):1749-61. PubMed ID: 2156801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]