BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8501046)

  • 1. In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 294, and 297 in the small (HoxK) subunit affects H2 oxidation [corrected].
    Sayavedra-Soto LA; Arp DJ
    J Bacteriol; 1993 Jun; 175(11):3414-21. PubMed ID: 8501046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of Azotobacter vinelandii hydrogenase small-subunit cysteines by serines can create insensitivity to inhibition by O2 and preferentially damages H2 oxidation over H2 evolution.
    McTavish H; Sayavedra-Soto LA; Arp DJ
    J Bacteriol; 1995 Jul; 177(14):3960-4. PubMed ID: 7608067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hydrogenase cytochrome b heme ligands of Azotobacter vinelandii are required for full H(2) oxidation capability.
    Meek L; Arp DJ
    J Bacteriol; 2000 Jun; 182(12):3429-36. PubMed ID: 10852874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii.
    Menon AL; Mortenson LE; Robson RL
    J Bacteriol; 1992 Jul; 174(14):4549-57. PubMed ID: 1624446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hoxZ gene of the Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase.
    Sayavedra-Soto LA; Arp DJ
    J Bacteriol; 1992 Aug; 174(16):5295-301. PubMed ID: 1644756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hypE gene completes the gene cluster for H2-oxidation in Azotobacter vinelandii.
    Garg RP; Menon AL; Jacobs K; Robson RM; Robson RL
    J Mol Biol; 1994 Feb; 236(1):390-6. PubMed ID: 7906310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxyl-terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii.
    Gollin DJ; Mortenson LE; Robson RL
    FEBS Lett; 1992 Sep; 309(3):371-5. PubMed ID: 1516712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification, characterization, sequencing and mutagenesis of the genes (hupSL) encoding the small and large subunits of the H2-uptake hydrogenase of Azotobacter chroococcum.
    Ford CM; Garg N; Garg RP; Tibelius KH; Yates MG; Arp DJ; Seefeldt LC
    Mol Microbiol; 1990 Jun; 4(6):999-1008. PubMed ID: 2215219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of isotope exchange, H2 evolution, and H2 oxidation activities of Azotobacter vinelandii hydrogenase.
    McTavish H; Sayavedra-Soto LA; Arp DJ
    Biochim Biophys Acta; 1996 May; 1294(2):183-90. PubMed ID: 8645737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of redox mediators on nitrogenase and hydrogenase activities in Azotobacter vinelandii.
    Huang HQ; Lin QM; Zhai WJ; Chen CH
    J Protein Chem; 2000 Nov; 19(8):671-8. PubMed ID: 11307951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii.
    Menon AL; Stults LW; Robson RL; Mortenson LE
    Gene; 1990 Nov; 96(1):67-74. PubMed ID: 2265761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration.
    Gross R; Simon J; Theis F; Kröger A
    Arch Microbiol; 1998 Jul; 170(1):50-8. PubMed ID: 9639603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogenase does not confer significant benefits to Azotobacter vinelandii growing diazotrophically under conditions of glucose limitation.
    Linkerhägner K; Oelze J
    J Bacteriol; 1995 Oct; 177(20):6018-20. PubMed ID: 7592361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of alcohols on the reactivity and stability of Azotobacter vinelandii hydrogenase.
    Arp DJ
    Arch Biochem Biophys; 1988 Feb; 261(1):35-43. PubMed ID: 3277540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a gene region required for dihydrogen oxidation in Azotobacter vinelandii.
    Chen JC; Mortenson LE; Seefeldt LC
    Curr Microbiol; 1995 Jun; 30(6):351-5. PubMed ID: 7773102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-mediated enhancement of hydrogenase expression in Azotobacter vinelandii.
    Prosser J; Graham L; Maier RJ
    J Bacteriol; 1988 Apr; 170(4):1990-3. PubMed ID: 3280556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites.
    Magnani P; Doussiere J; Lissolo T
    Biochim Biophys Acta; 2000 Jul; 1459(1):169-78. PubMed ID: 10924909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of six open reading frames from a region of the Azotobacter vinelandii genome likely involved in dihydrogen metabolism.
    Chen JC; Mortenson LE
    Biochim Biophys Acta; 1992 Jun; 1131(2):199-202. PubMed ID: 1610901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two open reading frames (ORFs) identified near the hydrogenase structural genes in Azotobacter vinelandii, the first ORF may encode for a polypeptide similar to rubredoxins.
    Chen JC; Mortenson LE
    Biochim Biophys Acta; 1992 May; 1131(1):122-4. PubMed ID: 1581355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.