These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 8501056)
1. Positive regulation of phenolic catabolism in Agrobacterium tumefaciens by the pcaQ gene in response to beta-carboxy-cis,cis-muconate. Parke D J Bacteriol; 1993 Jun; 175(11):3529-35. PubMed ID: 8501056 [TBL] [Abstract][Full Text] [Related]
2. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens. Parke D J Bacteriol; 1995 Jul; 177(13):3808-17. PubMed ID: 7601847 [TBL] [Abstract][Full Text] [Related]
3. Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens. Parke D J Bacteriol; 1996 Jan; 178(1):266-72. PubMed ID: 8550427 [TBL] [Abstract][Full Text] [Related]
4. Conservation of PcaQ, a transcriptional activator of pca genes for catabolism of phenolic compounds, in Agrobacterium tumefaciens and Rhizobium species. Parke D J Bacteriol; 1996 Jun; 178(12):3671-5. PubMed ID: 8655573 [TBL] [Abstract][Full Text] [Related]
5. Positive selection for mutations affecting bioconversion of aromatic compounds in Agrobacterium tumefaciens: analysis of spontaneous mutations in the protocatechuate 3,4-dioxygenase gene. Parke D J Bacteriol; 2000 Nov; 182(21):6145-53. PubMed ID: 11029436 [TBL] [Abstract][Full Text] [Related]
6. Structure and function of the 3-carboxy-cis,cis-muconate lactonizing enzyme from the protocatechuate degradative pathway of Agrobacterium radiobacter S2. Halak S; Lehtiö L; Basta T; Bürger S; Contzen M; Stolz A; Goldman A FEBS J; 2006 Nov; 273(22):5169-82. PubMed ID: 17054713 [TBL] [Abstract][Full Text] [Related]
7. The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the beta-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria. Habe H; Chung JS; Ishida A; Kasuga K; Ide K; Takemura T; Nojiri H; Yamane H; Omori T Microbiology (Reading); 2005 Nov; 151(Pt 11):3713-3722. PubMed ID: 16272392 [TBL] [Abstract][Full Text] [Related]
8. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. Parke D; Rynne F; Glenn A J Bacteriol; 1991 Sep; 173(17):5546-50. PubMed ID: 1885531 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization of the genes pcaG and pcaH, encoding protocatechuate 3,4-dioxygenase, which are essential for vanillin catabolism in Pseudomonas sp. strain HR199. Overhage J; Kresse AU; Priefert H; Sommer H; Krammer G; Rabenhorst J; Steinbüchel A Appl Environ Microbiol; 1999 Mar; 65(3):951-60. PubMed ID: 10049847 [TBL] [Abstract][Full Text] [Related]
10. In vitro reconstitution of the catabolic reactions catalyzed by PcaHG, PcaB, and PcaL: the protocatechuate branch of the β-ketoadipate pathway in Rhodococcus jostii RHA1. Yamanashi T; Kim SY; Hara H; Funa N Biosci Biotechnol Biochem; 2015; 79(5):830-5. PubMed ID: 25558786 [TBL] [Abstract][Full Text] [Related]
11. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. Gerischer U; Segura A; Ornston LN J Bacteriol; 1998 Mar; 180(6):1512-24. PubMed ID: 9515921 [TBL] [Abstract][Full Text] [Related]
12. Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity. Eulberg D; Lakner S; Golovleva LA; Schlömann M J Bacteriol; 1998 Mar; 180(5):1072-81. PubMed ID: 9495744 [TBL] [Abstract][Full Text] [Related]
13. Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti. MacLean AM; Anstey MI; Finan TM J Bacteriol; 2008 Feb; 190(4):1237-46. PubMed ID: 18055594 [TBL] [Abstract][Full Text] [Related]
14. mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. Williams PA; Shaw LE J Bacteriol; 1997 Sep; 179(18):5935-42. PubMed ID: 9294455 [TBL] [Abstract][Full Text] [Related]
15. Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. Parsek MR; Shinabarger DL; Rothmel RK; Chakrabarty AM J Bacteriol; 1992 Dec; 174(23):7798-806. PubMed ID: 1447146 [TBL] [Abstract][Full Text] [Related]
17. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. Lohrke SM; Yang H; Jin S J Bacteriol; 2001 Jun; 183(12):3704-11. PubMed ID: 11371534 [TBL] [Abstract][Full Text] [Related]
18. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. Parke D; Ornston LN J Bacteriol; 1986 Jan; 165(1):288-92. PubMed ID: 3941043 [TBL] [Abstract][Full Text] [Related]
19. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. Mantis NJ; Winans SC J Bacteriol; 1993 Oct; 175(20):6626-36. PubMed ID: 8407840 [TBL] [Abstract][Full Text] [Related]
20. Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus. Doten RC; Ngai KL; Mitchell DJ; Ornston LN J Bacteriol; 1987 Jul; 169(7):3168-74. PubMed ID: 3036773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]