BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 8501063)

  • 1. Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli.
    Nygaard P; Smith JM
    J Bacteriol; 1993 Jun; 175(11):3591-7. PubMed ID: 8501063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of a new purine biosynthetic enzyme: a non-folate glycinamide ribonucleotide transformylase from E. coli.
    Marolewski A; Smith JM; Benkovic SJ
    Biochemistry; 1994 Mar; 33(9):2531-7. PubMed ID: 8117714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formyl phosphate: a proposed intermediate in the reaction catalyzed by Escherichia coli PurT GAR transformylase.
    Marolewski AE; Mattia KM; Warren MS; Benkovic SJ
    Biochemistry; 1997 Jun; 36(22):6709-16. PubMed ID: 9184151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure of Escherichia coli PurT-encoded glycinamide ribonucleotide transformylase.
    Thoden JB; Firestine S; Nixon A; Benkovic SJ; Holden HM
    Biochemistry; 2000 Aug; 39(30):8791-802. PubMed ID: 10913290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. purU, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthesis.
    Nagy PL; McCorkle GM; Zalkin H
    J Bacteriol; 1993 Nov; 175(21):7066-73. PubMed ID: 8226647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and physiological characterization of a formate-dependent 5'-phosphoribosyl-1-glycinamide transformylase activity in Bacillus subtilis.
    Saxild HH; Jacobsen JH; Nygaard P
    Mol Gen Genet; 1994 Feb; 242(4):415-20. PubMed ID: 8121396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase.
    Saxild HH; Jacobsen JH; Nygaard P
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2211-8. PubMed ID: 7496533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and nucleotide sequence of a gene encoding 5'-phosphoribosylglycinamide transformylase in Escherichia coli K12.
    Smith JM; Daum HA
    J Biol Chem; 1987 Aug; 262(22):10565-9. PubMed ID: 3301838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes.
    Schnorr KM; Nygaard P; Laloue M
    Plant J; 1994 Jul; 6(1):113-21. PubMed ID: 7920700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of an active enzyme by the linkage of two protein modules.
    Nixon AE; Warren MS; Benkovic SJ
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1069-73. PubMed ID: 9037007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the cofactor specificity of glycinamide ribonucleotide and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase from chicken liver.
    Smith GK; Mueller WT; Benkovic PA; Benkovic SJ
    Biochemistry; 1981 Mar; 20(5):1241-5. PubMed ID: 7225325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase.
    Inglese J; Johnson DL; Shiau A; Smith JM; Benkovic SJ
    Biochemistry; 1990 Feb; 29(6):1436-43. PubMed ID: 2185839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli.
    Aimi J; Qiu H; Williams J; Zalkin H; Dixon JE
    Nucleic Acids Res; 1990 Nov; 18(22):6665-72. PubMed ID: 2147474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli.
    Wang W; Kappock TJ; Stubbe J; Ealick SE
    Biochemistry; 1998 Nov; 37(45):15647-62. PubMed ID: 9843369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of human GAR Tfase at low and high pH and with substrate beta-GAR.
    Zhang Y; Desharnais J; Greasley SE; Beardsley GP; Boger DL; Wilson IA
    Biochemistry; 2002 Dec; 41(48):14206-15. PubMed ID: 12450384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of cDNAs encoding two purine biosynthetic enzymes of soybean and expression of the corresponding transcripts in roots and root nodules.
    Schnorr KM; Laloue M; Hirel B
    Plant Mol Biol; 1996 Nov; 32(4):751-7. PubMed ID: 8980527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism.
    Caperelli CA; Giroux EL
    Arch Biochem Biophys; 1997 May; 341(1):98-103. PubMed ID: 9143358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assignment of a third purine biosynthetic gene (glycinamide ribonucleotide transformylase) to human chromosome 21.
    Hards RG; Benkovic SJ; Van Keuren ML; Graw SL; Drabkin HA; Patterson D
    Am J Hum Genet; 1986 Aug; 39(2):179-85. PubMed ID: 3529945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folate-Dependent Purine Nucleotide Biosynthesis in Humans.
    Baggott JE; Tamura T
    Adv Nutr; 2015 Sep; 6(5):564-71. PubMed ID: 26374178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in the efficiency of formyl transfer of a GAR transformylase hybrid enzyme.
    Nixon AE; Benkovic SJ
    Protein Eng; 2000 May; 13(5):323-7. PubMed ID: 10835105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.