These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 8501066)

  • 1. High-efficiency gene inactivation and replacement system for gram-positive bacteria.
    Biswas I; Gruss A; Ehrlich SD; Maguin E
    J Bacteriol; 1993 Jun; 175(11):3628-35. PubMed ID: 8501066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes.
    Law J; Buist G; Haandrikman A; Kok J; Venema G; Leenhouts K
    J Bacteriol; 1995 Dec; 177(24):7011-8. PubMed ID: 8522504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General and specialized vectors derived from pBM02, a new rolling circle replicating plasmid of Lactococcus lactis.
    Sánchez C; Mayo B
    Plasmid; 2004 May; 51(3):265-71. PubMed ID: 15109833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering large fragment insertions into the chromosome of Escherichia coli.
    Rong R; Slupska MM; Chiang JH; Miller JH
    Gene; 2004 Jul; 336(1):73-80. PubMed ID: 15225877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a lactococcal integration vector by using IS981 and a temperature-sensitive lactococcal replication region.
    Polzin KM; McKay LL
    Appl Environ Microbiol; 1992 Feb; 58(2):476-84. PubMed ID: 1319131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive selection, cloning vectors for gram-positive bacteria based on a restriction endonuclease cassette.
    Djordjevic GM; Klaenhammer TR
    Plasmid; 1996 Jan; 35(1):37-45. PubMed ID: 8693025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dual-Replicon Shuttle Vector System for Heterologous Gene Expression in a Broad Range of Gram-Positive and Gram-Negative Bacteria.
    Hua M; Guo J; Li M; Chen C; Zhang Y; Song C; Jiang D; Du P; Zeng H
    Curr Microbiol; 2018 Oct; 75(10):1391-1400. PubMed ID: 29987521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacement recombination in Lactococcus lactis.
    Leenhouts KJ; Kok J; Venema G
    J Bacteriol; 1991 Aug; 173(15):4794-8. PubMed ID: 1906872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter.
    Le Loir Y; Gruss A; Ehrlich SD; Langella P
    J Bacteriol; 1994 Aug; 176(16):5135-9. PubMed ID: 8051029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence and analysis of pWC1, a pC194-type rolling circle replicon in Lactococcus lactis.
    Pillidge CJ; Cambourn WM; Pearce LE
    Plasmid; 1996 Mar; 35(2):131-40. PubMed ID: 8700966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A counterselection method for Lactococcus lactis genome editing based on class IIa bacteriocin sensitivity.
    Wan X; Usvalampi AM; Saris PE; Takala TM
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9661-9669. PubMed ID: 27654656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly efficient and stable system for site-specific integration of genes and plasmids into the phage phiLC3 attachment site (attB) of the Lactococcus lactis chromosome.
    Lillehaug D; Nes IF; Birkeland NK
    Gene; 1997 Mar; 188(1):129-36. PubMed ID: 9099871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication and temperature-sensitive maintenance functions of lactose plasmid pSK11L from Lactococcus lactis subsp. cremoris.
    Horng JS; Polzin KM; McKay LL
    J Bacteriol; 1991 Dec; 173(23):7573-81. PubMed ID: 1938953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New method for generating deletions and gene replacements in Escherichia coli.
    Hamilton CM; Aldea M; Washburn BK; Babitzke P; Kushner SR
    J Bacteriol; 1989 Sep; 171(9):4617-22. PubMed ID: 2548993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of first-generation lactococcal integrative cloning vectors.
    McIntyre DA; Harlander SK
    Appl Microbiol Biotechnol; 1993 Nov; 40(2-3):348-55. PubMed ID: 7764390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a food-grade multiple-copy integration system for Lactococcus lactis.
    Leenhouts K; Bolhuis A; Venema G; Kok J
    Appl Microbiol Biotechnol; 1998 Apr; 49(4):417-23. PubMed ID: 9615484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved cloning vectors and transformation procedure for Lactococcus lactis.
    Wells JM; Wilson PW; Le Page RW
    J Appl Bacteriol; 1993 Jun; 74(6):629-36. PubMed ID: 8349525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theta replication of the lactococcal plasmid pWVO2.
    Kiewiet R; Bron S; de Jonge K; Venema G; Seegers JF
    Mol Microbiol; 1993 Oct; 10(2):319-27. PubMed ID: 7934823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random transposon vectors pUTTns for the markerless integration of exogenous genes into gram-negative eubacteria chromosomes.
    Li R; Wang G; Shen B; Wang R; Song Y; Li S; Jiang J
    J Microbiol Methods; 2009 Nov; 79(2):220-6. PubMed ID: 19778558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.
    Song L; Cui H; Tang L; Qiao X; Liu M; Jiang Y; Cui W; Li Y
    J Microbiol Methods; 2014 Jul; 102():37-44. PubMed ID: 24798148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.