These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 850199)

  • 41. Ascending spinal influences on rubrospinal cells in the cat.
    Rathelot JA; Padel Y
    Exp Brain Res; 1997 Sep; 116(2):326-40. PubMed ID: 9348131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The thalamic relay and cortical projection of group I muscle afferents from the forelimb of the cat.
    Andersson SA; Landgren S; Wolsk D
    J Physiol; 1966 Apr; 183(3):576-91. PubMed ID: 5919557
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fastigial nucleus modulation of medullary parasolitary neurons.
    Person RJ; Dormer KJ; Bedford TG; Andrezik JA; Foreman RD
    Neuroscience; 1986 Dec; 19(4):1293-301. PubMed ID: 3822123
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nociceptive input to ascending tract neurones forwarding information from low threshold cutaneous and muscle afferents in cats.
    Schomburg ED; Jankowska E; Wiklund Fernström K
    Neurosci Res; 2000 Sep; 38(1):117-20. PubMed ID: 10997586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Broad directional tuning in spinal projections to the cerebellum.
    Bosco G; Poppele RE
    J Neurophysiol; 1993 Aug; 70(2):863-6. PubMed ID: 8410178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synaptic organization of defined motor-unit types in cat tibialis anterior.
    Dum RP; Kennedy TT
    J Neurophysiol; 1980 Jun; 43(6):1631-44. PubMed ID: 7411179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ventrolateral and dorsolateral ascending spinal cord pathway influence on thalamic nociception in cat.
    Martin RJ; Apkarian AV; Hodge CJ
    J Neurophysiol; 1990 Nov; 64(5):1400-12. PubMed ID: 2178182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uncrossed actions of feline corticospinal tract neurones on hindlimb motoneurones evoked via ipsilaterally descending pathways.
    Stecina K; Jankowska E
    J Physiol; 2007 Apr; 580(Pt 1):119-32. PubMed ID: 17255171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Demonstration of initial axon collaterals of cells of origin of the ventral spinocerebellar tract in the cat.
    Bras H; Cavallari P; Jankowska E
    J Comp Neurol; 1988 Jul; 273(4):584-92. PubMed ID: 2463285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The immediate shift of afferent drive to dorsal column nucleus cells following deafferentation: a comparison of acute and chronic deafferentation in gracile nucleus and spinal cord.
    Dostrovsky JO; Millar J; Wall PD
    Exp Neurol; 1976 Sep; 52(3):480-95. PubMed ID: 954919
    [No Abstract]   [Full Text] [Related]  

  • 51. Properties of different functional types of neurones in the cat's rostral trigeminal nuclei responding to sinus hair stimulation.
    Gottschaldt K-M ; Young DW
    J Physiol; 1977 Oct; 272(1):57-84. PubMed ID: 592153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The somatotopy of the gracile nucleus in cats with agenesis of a hindfoot.
    Schultz W; Wiesendanger R; Hess B; Ruffieux A; Wiesendanger M
    Exp Brain Res; 1981; 43(3-4):413-8. PubMed ID: 7262234
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat's fasciculus gracilis.
    Angaut-Petit D
    Exp Brain Res; 1975 May; 22(5):471-93. PubMed ID: 1149840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Representation of passive hindlimb postures in cat spinocerebellar activity.
    Bosco G; Rankin A; Poppele R
    J Neurophysiol; 1996 Aug; 76(2):715-26. PubMed ID: 8871193
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Submodality segregation and receptive-field sequences in cuneate, gracile, and external cuneate nuclei of the cat.
    Dykes RW; Rasmusson DD; Sretavan D; Rehman NB
    J Neurophysiol; 1982 Mar; 47(3):389-416. PubMed ID: 6461730
    [No Abstract]   [Full Text] [Related]  

  • 56. Electrophysiological identification of a somaesthetic pathway to the red nucleus.
    Padel Y; Sybirska E; Bourbonnais D; Vinay L
    Behav Brain Res; 1988; 28(1-2):139-51. PubMed ID: 2838041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High gain transmission of single impulses through dorsal column nuclei of the cat.
    Ferrington DG; Rowe MJ; Tarvin RP
    Neurosci Lett; 1986 Apr; 65(3):277-82. PubMed ID: 3012419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of response properties of dorsal and ventral spinocerebellar tract neurons to a physiological stimulus.
    Kim JH; Ebner TJ; Bloedel JR
    Brain Res; 1986 Mar; 369(1-2):125-35. PubMed ID: 3697736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thalamic projection of muscle nerve afferents in the cat.
    Mallart A
    J Physiol; 1968 Feb; 194(2):337-53. PubMed ID: 5639358
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interlimb coordination during stepping in the cat: the role of the dorsal spinocerebellar tract.
    English AW
    Exp Neurol; 1985 Jan; 87(1):96-108. PubMed ID: 3967704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.