These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 8502189)

  • 1. [Superantigens and antigen recognition of T lymphocytes].
    Gülmezoğlu E
    Mikrobiyol Bul; 1993 Apr; 27(2):164-70. PubMed ID: 8502189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable influence of MHC polymorphism on the recognition of bacterial superantigens by T cells.
    Wen R; Blackman MA; Woodland DL
    J Immunol; 1995 Aug; 155(4):1884-92. PubMed ID: 7636239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alpha 1 domain of the HLA-DR molecule is essential for high-affinity binding of the toxic shock syndrome toxin-1.
    Karp DR; Teletski CL; Scholl P; Geha R; Long EO
    Nature; 1990 Aug; 346(6283):474-6. PubMed ID: 2377209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation.
    Arad G; Levy R; Hillman D; Kaempfer R
    Nat Med; 2000 Apr; 6(4):414-21. PubMed ID: 10742148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MHC-specific recognition of a bacterial superantigen by weakly reactive T cells.
    Surman S; Deckhut AM; Blackman MA; Woodland DL
    J Immunol; 1994 May; 152(10):4893-902. PubMed ID: 8176210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of murine T cells by toxic shock syndrome toxin-1. The toxin-binding structures expressed on murine accessory cells are MHC class II molecules.
    Uchiyama T; Tadakuma T; Imanishi K; Araake M; Saito S; Yan XJ; Fujikawa H; Igarashi H; Yamaura N
    J Immunol; 1989 Nov; 143(10):3175-82. PubMed ID: 2509554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells.
    Wen R; Broussard DR; Surman S; Hogg TL; Blackman MA; Woodland DL
    Eur J Immunol; 1997 Mar; 27(3):772-81. PubMed ID: 9079821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between staphylococcal superantigens and MHC class II molecules.
    Labrecque N; Thibodeau J; Sékaly RP
    Semin Immunol; 1993 Feb; 5(1):23-32. PubMed ID: 8467091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between superantigens and immunoreceptors.
    Petersson K; Forsberg G; Walse B
    Scand J Immunol; 2004 Apr; 59(4):345-55. PubMed ID: 15049778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residues of the variable region of the T-cell-receptor beta-chain that interact with S. aureus toxin superantigens.
    Choi YW; Herman A; DiGiusto D; Wade T; Marrack P; Kappler J
    Nature; 1990 Aug; 346(6283):471-3. PubMed ID: 2377208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superantigen antagonist blocks Th1 cytokine gene induction and lethal shock.
    Arad G; Hillman D; Levy R; Kaempfer R
    J Leukoc Biol; 2001 Jun; 69(6):921-7. PubMed ID: 11404377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bacterial superantigen and superantigen-like proteins.
    Fraser JD; Proft T
    Immunol Rev; 2008 Oct; 225():226-43. PubMed ID: 18837785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercellular adhesion molecule-1 and leukocyte function-associated antigen-3 provide costimulation for superantigen-induced T lymphocyte proliferation in the absence of a specific presenting molecule.
    Lamphear JG; Stevens KR; Rich RR
    J Immunol; 1998 Jan; 160(2):615-23. PubMed ID: 9551895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular requirements for T cell activation by the staphylococcal toxic shock syndrome toxin-1.
    Norton SD; Schlievert PM; Novick RP; Jenkins MK
    J Immunol; 1990 Mar; 144(6):2089-95. PubMed ID: 2313089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defense against biologic warfare with superantigen toxins.
    Kaempfer R; Arad G; Levy R; Hillman D
    Isr Med Assoc J; 2002 Jul; 4(7):520-3. PubMed ID: 12120463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel HLA class II-independent TCR-mediated T cell activation mechanism is distinguished by the V beta specificity of the proliferating oligoclones and their capacity to generate interleukin-2.
    Dennig D; Yan Y; Ferguson K; O'Reilly RJ
    Cell Immunol; 1996 Aug; 171(2):200-10. PubMed ID: 8806788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptococcus pyogenes: Insight into the function of the streptococcal superantigens.
    Sriskandan S; Faulkner L; Hopkins P
    Int J Biochem Cell Biol; 2007; 39(1):12-9. PubMed ID: 17029999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes.
    Arcus VL; Proft T; Sigrell JA; Baker HM; Fraser JD; Baker EN
    J Mol Biol; 2000 May; 299(1):157-68. PubMed ID: 10860729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the role of HLA-DQ polymorphisms on immune response to bacterial superantigens using transgenic mice.
    Rajagopalan G; Polich G; Sen MM; Singh M; Epstein BE; Lytle AK; Rouse MS; Patel R; David CS
    Tissue Antigens; 2008 Feb; 71(2):135-45. PubMed ID: 18086265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects.
    Alouf JE; Müller-Alouf H
    Int J Med Microbiol; 2003 Feb; 292(7-8):429-40. PubMed ID: 12635926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.