These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8502567)

  • 1. The nucleosome repeat length of Kluyveromyces lactis is 16 bp longer than that of Saccharomyces cerevisiae.
    Heus JJ; Zonneveld BJ; Bloom KS; de Steensma HY; van den Berg JA
    Nucleic Acids Res; 1993 May; 21(9):2247-8. PubMed ID: 8502567
    [No Abstract]   [Full Text] [Related]  

  • 2. DNA superstructural features and nucleosomal organization of the two centromeres of Kluyveromyces lactis chromosome 1 and Saccharomyces cerevisiae chromosome 6.
    Del Cornò M; De Santis P; Sampaolese B; Savino M
    FEBS Lett; 1998 Jul; 431(1):66-70. PubMed ID: 9684867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS; Steensma HY
    FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical separation and functional interaction of Kluyveromyces lactis and Saccharomyces cerevisiae ARS elements derived from killer plasmid DNA.
    Thompson A; Oliver SG
    Yeast; 1986 Sep; 2(3):179-91. PubMed ID: 3333307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GDI1 genes from Kluyveromyces lactis and Pichia pastoris: cloning and functional expression in Saccharomyces cerevisiae.
    Brummer MH; Richard P; Sundqvist L; Väänänen R; Keränen S
    Yeast; 2001 Jul; 18(10):897-902. PubMed ID: 11447595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo.
    Hughes AL; Rando OJ
    G3 (Bethesda); 2015 Jul; 5(9):1889-97. PubMed ID: 26175451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random exploration of the Kluyveromyces lactis genome and comparison with that of Saccharomyces cerevisiae.
    Ozier-Kalogeropoulos O; Malpertuy A; Boyer J; Tekaia F; Dujon B
    Nucleic Acids Res; 1998 Dec; 26(23):5511-24. PubMed ID: 9826779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered response to growth rate changes in Kluyveromyces lactis versus Saccharomyces cerevisiae as demonstrated by heterologous expression of ribosomal protein 59 (CRY1).
    Larson GP; Rossi JJ
    Nucleic Acids Res; 1991 Sep; 19(17):4701-7. PubMed ID: 1891361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis.
    Wesolowski-Louvel M; Tanguy-Rougeau C; Fukuhara H
    Yeast; 1988 Mar; 4(1):71-81. PubMed ID: 3059713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous expression of an α-amylase inhibitor from common bean (Phaseolus vulgaris) in Kluyveromyces lactis and Saccharomyces cerevisiae.
    Brain-Isasi S; Álvarez-Lueje A; Higgins TJV
    Microb Cell Fact; 2017 Jun; 16(1):110. PubMed ID: 28619052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and sequence analysis of a K. lactis chromosomal DNA element able to autonomously replicate in S. cerevisiae and K. lactis.
    Fabiani L; Aragona M; Frontali L
    Yeast; 1990; 6(1):69-76. PubMed ID: 2180237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-affinity glucose carrier gene LGT1 of Saccharomyces cerevisiae, a homologue of the Kluyveromyces lactis RAG1 gene.
    Prior C; Fukuhara H; Blaisonneau J; Wesolowski-Louvel M
    Yeast; 1993 Dec; 9(12):1373-7. PubMed ID: 8154188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the Kluyveromyces lactis homocysteine synthase gene.
    Brzywczy J; Paszewski A
    Yeast; 1999 Sep; 15(13):1403-9. PubMed ID: 10509022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the sequences required for chromosomal replicator function in Kluyveromyces lactis.
    Irene C; Maciariello C; Cioci F; Camilloni G; Newlon CS; Fabiani L
    Mol Microbiol; 2004 Mar; 51(5):1413-23. PubMed ID: 14982634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sequence of the Kluyveromyces lactis BiP gene.
    Lewis MJ; Pelham HR
    Nucleic Acids Res; 1990 Nov; 18(21):6438. PubMed ID: 2243798
    [No Abstract]   [Full Text] [Related]  

  • 16. Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis.
    Steensma HY; Ter Linde JJ
    Yeast; 2001 Mar; 18(5):469-72. PubMed ID: 11255255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosome assembly on telomeric sequences.
    Rossetti L; Cacchione S; Fuà M; Savino M
    Biochemistry; 1998 May; 37(19):6727-37. PubMed ID: 9578556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed.
    Toikkanen JH; Sundqvist L; Keränen S
    Yeast; 2004 Sep; 21(12):1045-55. PubMed ID: 15449305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Kluyveromyces lactis subtelomeric sequences including a distal element with strong purine/pyrimidine strand bias.
    Nickles K; McEachern MJ
    Yeast; 2004 Jul; 21(10):813-30. PubMed ID: 15300678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of GCR1, a major transcription factor of glycolytic genes in Saccharomyces cerevisiae, from Kluyveromyces lactis.
    Haw R; Devi Yarragudi A; Uemura H
    Yeast; 2001 Jun; 18(8):729-35. PubMed ID: 11378900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.