These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8502623)

  • 1. Circadian motile activity of erythrophores in the red abdominal skin of tetra fishes and its possible significance in chromatic adaptation.
    Hayashi H; Sugimoto M; Oshima N; Fujii R
    Pigment Cell Res; 1993 Feb; 6(1):29-36. PubMed ID: 8502623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action of melanin-concentrating hormone (MCH) on teleost chromatophores.
    Oshima N; Kasukawa H; Fujii R; Wilkes BC; Hruby VJ; Hadley ME
    Gen Comp Endocrinol; 1986 Dec; 64(3):381-8. PubMed ID: 3026881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pineal complex, melatonin, and color change in the lamprey Lampetra.
    Joss JM
    Gen Comp Endocrinol; 1973 Aug; 21(1):188-95. PubMed ID: 4724761
    [No Abstract]   [Full Text] [Related]  

  • 4. The effects of melanophore-stimulating hormone and cyclic nucleotides on teleost fish chromatophores.
    Negishi S; Obika M
    Gen Comp Endocrinol; 1980 Dec; 42(4):471-6. PubMed ID: 6109685
    [No Abstract]   [Full Text] [Related]  

  • 5. Neural control of motile activity of light-sensitive iridophores in the neon tetra.
    Nagaishi H; Oshima N
    Pigment Cell Res; 1989; 2(6):485-92. PubMed ID: 2557604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormonal regulation of female nuptial coloration in a fish.
    Sköld HN; Amundsen T; Svensson PA; Mayer I; Bjelvenmark J; Forsgren E
    Horm Behav; 2008 Sep; 54(4):549-56. PubMed ID: 18586039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated nature of chromatophore responses in the in vitro frog skin bioassay.
    Hadley ME; Bagnara JT
    Endocrinology; 1969 Jan; 84(1):69-82. PubMed ID: 5782588
    [No Abstract]   [Full Text] [Related]  

  • 8. In vitro demonstration of adrenergic receptors controlling melanophore responses of the lizard, Anolis carolinensis.
    Goldman JM; Hadley ME
    J Pharmacol Exp Ther; 1969 Mar; 166(1):1-7. PubMed ID: 4388349
    [No Abstract]   [Full Text] [Related]  

  • 9. Adrenergic control of melanocytes.
    McGuire J
    Arch Dermatol; 1970 Feb; 101(2):173-80. PubMed ID: 4391729
    [No Abstract]   [Full Text] [Related]  

  • 10. Morphological color changes in fish: regulation of pigment cell density and morphology.
    Sugimoto M
    Microsc Res Tech; 2002 Sep; 58(6):496-503. PubMed ID: 12242707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible involvement of - and -receptors in the natural colour change and the MSH-induced dispersion in Xenopus laevis in vivo.
    Brouwer E; van de Veerdonk FC
    Eur J Pharmacol; 1972 Feb; 17(2):234-9. PubMed ID: 4402096
    [No Abstract]   [Full Text] [Related]  

  • 12. Norepinephrine or isoproterenol stimulation of pineal N-acetyltransferase activity and melatonin content in the Syrian hamster is restricted to the second half of the daily dark phase.
    Reiter RJ; Vaughan GM; Oaknin S; Troiani ME; Cozzi B; Li K
    Neuroendocrinology; 1987 Apr; 45(4):249-56. PubMed ID: 3574603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of melanocytes of dermis and epidermis to lightening agents.
    McGuire J; Möller H
    Nature; 1965 Oct; 208(5009):493-4. PubMed ID: 5867594
    [No Abstract]   [Full Text] [Related]  

  • 14. Possible role of non-classical chromatophorotropins on the regulation of the crustacean erythrophore.
    Nery LE; Da Silva MA; Castrucci AM
    J Exp Zool; 1999 Nov; 284(6):711-6. PubMed ID: 10531558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of chromatophore movements in dermal chromatic units of blue damselfish--I. The melanophore.
    Kasukawa H; Sugimoto M; Oshima N; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):253-7. PubMed ID: 2861944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptor mechanisms in fish chromatophores--VII. Muscarinic cholinoceptors and alpha adrenoceptors, both mediating pigment aggregation, strangely coexist in Corydoras melanophores.
    Kasukawa H; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 80(2):211-5. PubMed ID: 2860997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The beta adrenergic receptor and cyclic 3',5'-adenosine monophosphate: possible roles in the regulation of melanophore responses of the spadefoot toad, Scaphiopus couchi.
    Goldman JM; Hadley ME
    Gen Comp Endocrinol; 1969 Aug; 13(1):151-63. PubMed ID: 4389916
    [No Abstract]   [Full Text] [Related]  

  • 18. Regulation of eye and jaw colouration in three-spined stickleback Gasterosteus aculeatus.
    Franco-Belussi L; De Oliveira C; Sköld HN
    J Fish Biol; 2018 Jun; 92(6):1788-1804. PubMed ID: 29577284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigment migration in fish erythrophores is controlled by alpha 2-adrenoceptors.
    Karlsson JO; Andersson RG; Elwing H; Grundström N
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 91(2):513-6. PubMed ID: 2905964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the evolutionary history of melanin-concentrating and melanin-stimulating hormone receptors on melanophores: neopterygian (holostean) and chondrostean fishes.
    Sherbrooke WC; Hadley ME
    Pigment Cell Res; 1988; 1(5):344-9. PubMed ID: 3237601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.