BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8503119)

  • 1. Structural characterization of heparin's binding domain for human platelets.
    Suda Y; Marques D; Kermode JC; Kusumoto S; Sobel M
    Thromb Res; 1993 Mar; 69(6):501-8. PubMed ID: 8503119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural aspects of heparin responsible for interactions with von Willebrand factor.
    Poletti LF; Bird KE; Marques D; Harris RB; Suda Y; Sobel M
    Arterioscler Thromb Vasc Biol; 1997 May; 17(5):925-31. PubMed ID: 9157957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of heparin partial structures and their binding activities to platelets.
    Koshida S; Suda Y; Sobel M; Ormsby J; Kusumoto S
    Bioorg Med Chem Lett; 1999 Nov; 9(21):3127-32. PubMed ID: 10560738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III.
    Wu J; Zhang C; Mei X; Li Y; Xing XH
    Carbohydr Polym; 2014 Jan; 101():484-92. PubMed ID: 24299802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity studies on the heparin lyases from Flavobacterium heparinum.
    Desai UR; Wang HM; Linhardt RJ
    Biochemistry; 1993 Aug; 32(32):8140-5. PubMed ID: 8347612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heparinase 1 selectivity for the 3,6-di-O-sulfo-2-deoxy-2-sulfamido-alpha-D-glucopyranose (1,4) 2-O-sulfo-alpha-L-idopyranosyluronic acid (GlcNS3S6S-IdoA2S) linkages.
    Xiao Z; Zhao W; Yang B; Zhang Z; Guan H; Linhardt RJ
    Glycobiology; 2011 Jan; 21(1):13-22. PubMed ID: 20729345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of platelet binding of heparins and other glycosaminoglycans.
    Sobel M; Adelman B
    Thromb Res; 1988 Jun; 50(6):815-26. PubMed ID: 3137688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of the substrate specificity of heparin and heparan sulfate lyases.
    Linhardt RJ; Turnbull JE; Wang HM; Loganathan D; Gallagher JT
    Biochemistry; 1990 Mar; 29(10):2611-7. PubMed ID: 2334685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal binding to heparin disaccharides. I. Iduronic acid is the main binding site.
    Whitfield DM; Choay J; Sarkar B
    Biopolymers; 1992 Jun; 32(6):585-96. PubMed ID: 1643264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometric evidence for the enzymatic mechanism of the depolymerization of heparin-like glycosaminoglycans by heparinase II.
    Rhomberg AJ; Shriver Z; Biemann K; Sasisekharan R
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12232-7. PubMed ID: 9770469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfation of some chemically-modified heparins. Formation of a 3-sulfate analog of heparin.
    Rej RN; Ludwig-Baxter KG; Perlin AS
    Carbohydr Res; 1991 Mar; 210():299-310. PubMed ID: 1878883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of the interaction of Crataeva tapia bark protein with heparin and other glycosaminoglycans.
    Zhang F; Walcott B; Zhou D; Gustchina A; Lasanajak Y; Smith DF; Ferreira RS; Correia MT; Paiva PM; Bovin NV; Wlodawer A; Oliva ML; Linhardt RJ
    Biochemistry; 2013 Mar; 52(12):2148-56. PubMed ID: 23448527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparinase II from Flavobacterium heparinum. HPLC analysis of the saccharides generated from chemically modified heparins.
    Moffat CF; McLean MW; Long WF; Williamson FB
    Eur J Biochem; 1991 Dec; 202(2):531-41. PubMed ID: 1761054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence for a predominantly exolytic processive mechanism for depolymerization of heparin-like glycosaminoglycans by heparinase I.
    Ernst S; Rhomberg AJ; Biemann K; Sasisekharan R
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4182-7. PubMed ID: 9539710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of hexasaccharides derived from heparin. Analysis by HPLC and elucidation of structure by 1H NMR.
    Larnkjaer A; Hansen SH; Ostergaard PB
    Carbohydr Res; 1995 Jan; 266(1):37-52. PubMed ID: 7697649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.
    Angulo J; Hricovíni M; Gairi M; Guerrini M; de Paz JL; Ojeda R; Martín-Lomas M; Nieto PM
    Glycobiology; 2005 Oct; 15(10):1008-15. PubMed ID: 15958415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and Expression of Heparinase Gene from a Novel Strain Raoultella NX-TZ-3-15.
    Li Y; Lin Y; Jiang Y; Mehwish HM; Rajoka MSR; Zhao L
    Appl Biochem Biotechnol; 2022 Oct; 194(10):4971-4984. PubMed ID: 35679015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies on the tri- and tetrasaccharides isolated from porcine intestinal heparin and characterization of heparinase/heparitinases using them as substrates.
    Yamada S; Sakamoto K; Tsuda H; Yoshida K; Sugahara K; Khoo KH; Morris HR; Dell A
    Glycobiology; 1994 Feb; 4(1):69-78. PubMed ID: 8186552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive inhibition of heparinase by persulfonated glycosaminoglycans: a tool to detect heparin contamination.
    Aich U; Shriver Z; Tharakaraman K; Raman R; Sasisekharan R
    Anal Chem; 2011 Oct; 83(20):7815-22. PubMed ID: 21863856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of low-density lipoprotein interaction with glycosaminoglycans.
    Gigli M; Ghiselli G; Torri G; Naggi A; Rizzo V
    Biochim Biophys Acta; 1993 Apr; 1167(2):211-7. PubMed ID: 8466951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.