These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8503937)

  • 1. Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation.
    Alia ; Saradhi PP
    Biochem Biophys Res Commun; 1993 May; 193(1):54-8. PubMed ID: 8503937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Respiration of wheat root cells under simultaneous inhibition of parts I and III of the electron transport chain of mitochondria by rotenone and antimycine A].
    Rakhmatullina DF; Gordon LKh; Ogorodnikova TI
    Tsitologiia; 2005; 47(3):230-6. PubMed ID: 16706167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of oxidative damage to cultured cells and Caenorhabditis elegans by mitochondrial electron transport inhibitors.
    Ishiguro H; Yasuda K; Ishii N; Ihara K; Ohkubo T; Hiyoshi M; Ono K; Senoo-Matsuda N; Shinohara O; Yosshii F; Murakami M; Hartman PS; Tsuda M
    IUBMB Life; 2001 Apr; 51(4):263-8. PubMed ID: 11569921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malic enzyme activity and cyanide-insensitive electron transport in plant mitochondria.
    Rustin P; Moreau F
    Biochem Biophys Res Commun; 1979 Jun; 88(3):1125-31. PubMed ID: 223569
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?
    Gomes MP; Juneau P
    Environ Pollut; 2016 Nov; 218():402-409. PubMed ID: 27435612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response of intact Strongyloides ratti infective (L3) larvae to substrates and inhibitors of respiratory electron transport.
    Mendis AH; Armson A; Thompson RC; Grubb WB
    Int J Parasitol; 1991 Dec; 21(8):965-8. PubMed ID: 1787040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible role for cytochrome b-555 in the mung bean mitochondrial electron transport system.
    Shichi H; Hackett DP
    J Biochem; 1966 Jan; 59(1):84-8. PubMed ID: 4287287
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial electron-transport inhibitors.
    Singer TP
    Methods Enzymol; 1979; 55():454-62. PubMed ID: 223000
    [No Abstract]   [Full Text] [Related]  

  • 13. Mitochondrial morphology and dynamics in Triticum aestivum roots in response to rotenone and antimycin A.
    Rakhmatullina D; Ponomareva A; Gazizova N; Minibayeva F
    Protoplasma; 2016 Sep; 253(5):1299-308. PubMed ID: 26411562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage.
    Indo HP; Davidson M; Yen HC; Suenaga S; Tomita K; Nishii T; Higuchi M; Koga Y; Ozawa T; Majima HJ
    Mitochondrion; 2007; 7(1-2):106-18. PubMed ID: 17307400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction and oxidation of cytochrome C by Hymenolepis diminuta (Cestoda) mitochondria.
    Kim Y; Fioravanti CF
    Comp Biochem Physiol B; 1985; 81(2):335-9. PubMed ID: 2990809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation.
    Ježek J; Engstová H; Ježek P
    Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):750-762. PubMed ID: 28554565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory inhibitors and uncouplers prevent the aeration-induced increase in mitochondrial anion conductivity.
    Halle-Smith SC; Selwyn MJ
    Biochem J; 1990 Mar; 266(3):689-92. PubMed ID: 2327957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mitochondrial inhibitors on type I cells.
    Wyatt CN; Buckler KJ
    Adv Exp Med Biol; 2003; 536():55-8. PubMed ID: 14635649
    [No Abstract]   [Full Text] [Related]  

  • 19. NADH→NAD⁺ Transhydrogenation in Adult Ascaris suum Mitochondria.
    Holowiecki A; Fioravanti CF
    J Parasitol; 2015 Jun; 101(3):358-63. PubMed ID: 25587625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of oxygen consumption promotes mitochondrial calcium accumulation, a process associated with, and causally linked to, enhanced formation of tert-butylhydroperoxide-induced DNA single-strand breaks.
    Guidarelli A; Brambilla L; Clementi E; Sciorati C; Cantoni O
    Exp Cell Res; 1997 Nov; 237(1):176-85. PubMed ID: 9417880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.