BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 8504126)

  • 1. Metabolism of the 'organic osmolyte' glycerophosphorylcholine in isolated rat inner medullary collecting duct cells. I. Pathways for synthesis and degradation.
    Bauernschmitt HG; Kinne RK
    Biochim Biophys Acta; 1993 Jun; 1148(2):331-41. PubMed ID: 8504126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of the 'organic osmolyte' glycerophosphorylcholine in isolated rat inner medullary collecting duct cells. II. Regulation by extracellular osmolality.
    Bauernschmitt HG; Kinne RK
    Biochim Biophys Acta; 1993 Jul; 1150(1):25-34. PubMed ID: 8392869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choline transport in collecting duct cells isolated from the rat renal inner medulla.
    Bevan C; Kinne RK
    Pflugers Arch; 1990 Nov; 417(3):324-8. PubMed ID: 2274417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of rat liver CTP:phosphocholine cytidylyltransferase accelerates phosphatidylcholine synthesis and degradation.
    Walkey CJ; Kalmar GB; Cornell RB
    J Biol Chem; 1994 Feb; 269(8):5742-9. PubMed ID: 8119913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic regulation of synthesis of glycerophosphocholine from phosphatidylcholine in MDCK cells.
    Kwon ED; Jung KY; Edsall LC; Kim HY; García-Pérez A; Burg MB
    Am J Physiol; 1995 Feb; 268(2 Pt 1):C402-12. PubMed ID: 7864079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells.
    Ruhfus B; Tinel H; Kinne RK
    Pflugers Arch; 1996; 433(1-2):35-41. PubMed ID: 9019728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dehydration on glycerophosphorylcholine and choline distribution along the rat nephron.
    Levillain O; Schmolke M; Guder WG
    Pflugers Arch; 2001 May; 442(2):218-22. PubMed ID: 11417217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo CDP-choline-dependent glycerophosphorylcholine synthesis and its involvement as an intermediate in phosphatidylcholine synthesis.
    Infante JP
    FEBS Lett; 1987 Apr; 214(1):149-52. PubMed ID: 3032677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine causes glycerophosphorylcholine accumulation through ryanodine-inhibitable increase of cellular calcium and activation of phospholipase A2 in cultured MDCK cells.
    Kim DK; Jung KY
    Exp Mol Med; 1998 Sep; 30(3):151-8. PubMed ID: 9873837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmoregulation of glycerophosphorylcholine content of mammalian renal cells.
    Nakanishi T; Burg MB
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C795-801. PubMed ID: 2801928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic regulation of organic osmolytes in tubules from rat renal inner and outer medulla.
    Schmolke M; Guder WG
    Ren Physiol Biochem; 1989; 12(5-6):347-58. PubMed ID: 2623349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal medullary organic osmolytes.
    Garcia-Perez A; Burg MB
    Physiol Rev; 1991 Oct; 71(4):1081-115. PubMed ID: 1924548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting the ratio of different organic osmolytes in renal medullary cells.
    Moriyama T; Garcia-Perez A; Burg MB
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F847-58. PubMed ID: 2240234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of relative amounts of medullary organic osmolytes: effects of NaCl and urea differ.
    Nakanishi T; Uyama O; Nakahama H; Takamitsu Y; Sugita M
    Am J Physiol; 1993 Mar; 264(3 Pt 2):F472-9. PubMed ID: 8456960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells.
    Burger-Kentischer A; Müller E; März J; Fraek ML; Thurau K; Beck FX
    Kidney Int; 1999 Apr; 55(4):1417-25. PubMed ID: 10201006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Betaine and inositol reduce MDCK cell glycerophosphocholine by stimulating its degradation.
    Kwon ED; Zablocki K; Peters EM; Jung KY; García-Pérez A; Burg MB
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C200-7. PubMed ID: 8772445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells.
    Martin TW
    Biochim Biophys Acta; 1988 Oct; 962(3):282-96. PubMed ID: 2844277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylcholine of blood lipoprotein is the precursor of glycerophosphorylcholine found in seminal plasma.
    Hammerstedt RH; Rowan WA
    Biochim Biophys Acta; 1982 Mar; 710(3):370-6. PubMed ID: 7041984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase.
    Zablocki K; Miller SP; Garcia-Perez A; Burg MB
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7820-4. PubMed ID: 1652765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of sorbitol metabolism in renal inner medulla of diabetic rats: regulation by substrate, cosubstrate and products of the aldose reductase reaction.
    Grunewald RW; Weber II; Kinne-Saffran E; Kinne RK
    Biochim Biophys Acta; 1993 Nov; 1225(1):39-47. PubMed ID: 8241288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.