These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 850417)

  • 1. The diffusive Lotka-Volterra oscillating system.
    Jorné J
    J Theor Biol; 1977 Mar; 65(1):133-9. PubMed ID: 850417
    [No Abstract]   [Full Text] [Related]  

  • 2. Stable periodic solutions of the reactive-diffusive Volterra system of equations.
    Bhargava SC; Saxena RP
    J Theor Biol; 1977 Aug; 67(3):399-406. PubMed ID: 904321
    [No Abstract]   [Full Text] [Related]  

  • 3. Convergence to the equilibrium state in the Volterra-Lotka diffusion equations.
    Rothe F
    J Math Biol; 1976 Nov; 3(3-4):319-24. PubMed ID: 1022836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The diffusive Lotka-Volterra predator-prey system with delay.
    Al Noufaey KS; Marchant TR; Edwards MP
    Math Biosci; 2015 Dec; 270(Pt A):30-40. PubMed ID: 26471317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system.
    Mukhopadhyay B; Bhattacharyya R
    Bull Math Biol; 2006 Feb; 68(2):293-313. PubMed ID: 16794932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the non-existence of periodic solutions of the reactive-diffusive Volterra system of equations.
    Gopalsamy K; Aggarwala BD
    J Theor Biol; 1980 Feb; 82(3):537-40. PubMed ID: 7366230
    [No Abstract]   [Full Text] [Related]  

  • 7. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.
    Bendahmane M; Ruiz-Baier R; Tian C
    J Math Biol; 2016 May; 72(6):1441-65. PubMed ID: 26219250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The periodic competing Lotka-Volterra model with impulsive effect.
    Liu B; Chen L
    Math Med Biol; 2004 Jun; 21(2):129-45. PubMed ID: 15228103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lotka-Volterra system with Volterra multiplier.
    Gürlebeck K; Ji X
    Adv Exp Med Biol; 2011; 696():647-55. PubMed ID: 21431606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-equilibrium thermodynamics of temporally oscillating chemical reactions.
    Ishida K; Matsumoto S
    J Theor Biol; 1975 Aug; 52(2):343-63. PubMed ID: 1195748
    [No Abstract]   [Full Text] [Related]  

  • 11. Tunable diffusive lateral inhibition in chemical cells.
    Li N; Tompkins N; Gonzalez-Ochoa H; Fraden S
    Eur Phys J E Soft Matter; 2015 Mar; 38(3):18. PubMed ID: 25795263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lotka-Volterra systems in environments with randomly disordered temporal periodicity.
    Naess A; Dimentberg MF; Gaidai O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021126. PubMed ID: 18850805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion.
    Du LJ; Li WT; Wang JB
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1187-1213. PubMed ID: 29161856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial-temporal dissipative structures arising in open reactive systems with a negative feedback loop.
    Fernández A; Sinanoğlu O
    Biosystems; 1984; 17(1):3-9. PubMed ID: 6743791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system.
    Gambino G; Lombardo MC; Sammartino M
    Phys Rev E; 2018 Jan; 97(1-1):012220. PubMed ID: 29448421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A COEVOLUTIONARY ISOMORPHISM APPLIED TO LABORATORY STUDIES OF COMPETITION.
    Pease CM
    Evolution; 1985 Mar; 39(2):444-450. PubMed ID: 28564209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population dynamics and wave propagation in a Lotka-Volterra system with spatial diffusion.
    Wang MX; Lai PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051908. PubMed ID: 23214815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing uncertainty to approximate mechanistic models of interspecific interactions.
    Clark AT; Neuhauser C
    Theor Popul Biol; 2018 Sep; 123():35-44. PubMed ID: 29859932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Z-type control of populations for Lotka-Volterra model with exponential convergence.
    Zhang Y; Yan X; Liao B; Zhang Y; Ding Y
    Math Biosci; 2016 Feb; 272():15-23. PubMed ID: 26644036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillations death revisited; coupling of identical chemical oscillators.
    Bar-Eli K
    Phys Chem Chem Phys; 2011 Jun; 13(24):11606-14. PubMed ID: 21594295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.