These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 850418)
1. On the conformational dependence of the proton chemical shifts in nucleosides and nucleotides. I. Proton shifts in the ribose ring of pyrimidine nucleosides as a function of the torsion angle about the glycosyl bond. Giessner-Prettre C; Pullman B J Theor Biol; 1977 Mar; 65(1):171-88. PubMed ID: 850418 [No Abstract] [Full Text] [Related]
2. On the conformational dependence of the proton chemical shifts in nucleosides and nucleotides. II. Proton shifts in the ribose ring of purine nucleosides as a function of the torsion angle about the glycosyl bond. Giessner-Prettre C; Pullman B J Theor Biol; 1977 Mar; 65(1):189-201. PubMed ID: 850419 [No Abstract] [Full Text] [Related]
3. On the conformational dependence of the proton chemical shifts in nucleosides and nucleotides. III. Proton chemical shifts of 5'-nucleotides as a function of different conformational parameters. Prado FR; Giessner-Prettre C; Pullman B J Theor Biol; 1978 Sep; 74(2):259-77. PubMed ID: 713576 [No Abstract] [Full Text] [Related]
4. A proton magnetic resonance investigation of the glycosyl torsion angle of uracil nucleosides and nucleotides. Schleich T; Lusebrink TR; Cross BP; Johnson NP Nucleic Acids Res; 1975 Apr; 2(4):459-67. PubMed ID: 1138232 [TBL] [Abstract][Full Text] [Related]
5. Ab-inito quantum mechanical calculations of NMR chemical shifts in nucleic acids constituents. II. Conformational dependence of the 1H and 13C chemical shifts in the ribose. Giessner-Prettre C J Biomol Struct Dyn; 1985 Aug; 3(1):145-60. PubMed ID: 3917012 [TBL] [Abstract][Full Text] [Related]
6. Correlation between glycosyl torsion angle and sugar ring pucker does not always exist. Low JN; Tollin P; Wilson HR Nucleic Acids Res; 1982 Sep; 10(18):5599-604. PubMed ID: 7145709 [TBL] [Abstract][Full Text] [Related]
7. Quantum-mechanical studies on the conformation of nucleic acids and their constituents. Pullman B; Saran A Prog Nucleic Acid Res Mol Biol; 1976; 18():215-322. PubMed ID: 790473 [No Abstract] [Full Text] [Related]
8. Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment. Fonville JM; Swart M; Vokáčová Z; Sychrovský V; Šponer JE; Šponer J; Hilbers CW; Bickelhaupt FM; Wijmenga SS Chemistry; 2012 Sep; 18(39):12372-87. PubMed ID: 22899588 [TBL] [Abstract][Full Text] [Related]
9. Interaction of metal ions with nucleic acids. Interaction of copper(II) with pyrimidine nucleosides and their derivatives. Maskos K Acta Biochim Pol; 1979; 26(3):249-66. PubMed ID: 494945 [TBL] [Abstract][Full Text] [Related]
10. A comparative proton magnetic resonance conformational study of the tRNA "wobble" nucleosides 5-carboxymethyl-, 5-methoxycarbonylmethyl-, and 5-carbamoylmethyl-uridine. Lipnick RL; Fissekis JD Can J Biochem; 1980 Dec; 58(12):1355-8. PubMed ID: 6265045 [TBL] [Abstract][Full Text] [Related]
11. The dimensions and shapes of the furanose rings in nucleic acids. Arnott S; Hukins DW Biochem J; 1972 Nov; 130(2):453-65. PubMed ID: 4664573 [TBL] [Abstract][Full Text] [Related]
12. Nuclear magnetic resonance studies of 2'- and 3'-ribonucleotide structures in solution. Davies DB; Danyluk SS Biochemistry; 1975 Feb; 14(3):543-54. PubMed ID: 1111570 [TBL] [Abstract][Full Text] [Related]
13. Proton magnetic resonance study of the intramolecular association and conformation of the alpha and beta pyridine mononucleotides and nucleosides. Oppenheimer NJ; Kaplan NO Biochemistry; 1976 Sep; 15(18):3981-9. PubMed ID: 963016 [TBL] [Abstract][Full Text] [Related]
14. Conformational properties of adenylyl-3' leads to 5'-adenosine in aqueous solution. Kondo NS; Danyluk SS Biochemistry; 1976 Feb; 15(4):756-68. PubMed ID: 1247532 [TBL] [Abstract][Full Text] [Related]
15. Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. Altona C; Sundaralingam M J Am Chem Soc; 1973 Apr; 95(7):2333-44. PubMed ID: 4709237 [No Abstract] [Full Text] [Related]
16. 1-(2,3-Dideoxy-erythro-beta-D-hexopyranosyl)cytosine: an example of the conformational and stacking properties of pyranosyl pyrimidine nucleosides. A crystallographic and computational approach. De Winter HL; De Ranter CJ; Blaton NM; Peeters OM; Van Aerschot A; Herdewijn P Acta Crystallogr B; 1992 Feb; 48 ( Pt 1)():95-103. PubMed ID: 1319719 [TBL] [Abstract][Full Text] [Related]
17. Stereochemical studies on nucleic acid analogues. I. Conformations of alpha-nucleosides and alpha-nucleotides: interconversion of sugar puckers via O4'-exo. Latha YS; Yathindra N Biopolymers; 1992 Mar; 32(3):249-69. PubMed ID: 1581546 [TBL] [Abstract][Full Text] [Related]
18. High pressure response of Munte CE; Karl M; Kauter W; Eberlein L; Pham TV; Erlach MB; Kast SM; Kremer W; Kalbitzer HR Biophys Chem; 2019 Nov; 254():106261. PubMed ID: 31522070 [TBL] [Abstract][Full Text] [Related]
19. (1) H NMR Spectra. Part 28: Proton chemical shifts and couplings in three-membered rings. A ring current model for cyclopropane and a novel dihedral angle dependence for (3) J(HH) couplings involving the epoxy proton. Abraham RJ; Leonard P; Tormena CF Magn Reson Chem; 2012 Apr; 50(4):305-13. PubMed ID: 22407746 [TBL] [Abstract][Full Text] [Related]
20. A proton nuclear-magnetic-resonance study of self-stacking in purine and pyrimidine nucleosides and nucleotides. Mitchell PR; Sigel H Eur J Biochem; 1978 Jul; 88(1):149-54. PubMed ID: 668705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]