These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8504562)

  • 1. Partial least-squares regression for routine analysis of urinary calculus composition with Fourier transform infrared analysis.
    Volmer M; Bolck A; Wolthers BG; de Ruiter AJ; Doornbos DA; van der Slik W
    Clin Chem; 1993 Jun; 39(6):948-54. PubMed ID: 8504562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural network predictions of urinary calculus compositions analyzed with infrared spectroscopy.
    Volmer M; Wolthers BG; Metting HJ; de Haan TH; Coenegracht PM; van der Slik W
    Clin Chem; 1994 Sep; 40(9):1692-7. PubMed ID: 8070077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Estimation of the weddellite to whewellite ratio by infrared spectroscopy].
    Moriguchi H; Hara Y; Tozuka K; Tokue A
    Hinyokika Kiyo; 1991 Jan; 37(1):1-5. PubMed ID: 2011962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of passed stones by means of X-rays, infrared and thermal analyses.
    Tozuka K; Konjiki T; Sudo T
    J Urol; 1983 Dec; 130(6):1119-22. PubMed ID: 6644891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared analysis of urinary calculi by a single reflection accessory and a neural network interpretation algorithm.
    Volmer M; de Vries JC; Goldschmidt HM
    Clin Chem; 2001; 47(7):1287-96. PubMed ID: 11427461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous determination of composition of human urinary calculi by use of artificial neural networks.
    Kuzmanovski I; Zografski Z; Trpkovska M; Soptrajanov B; Stefov V
    Fresenius J Anal Chem; 2001 Aug; 370(7):919-23. PubMed ID: 11569876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Does carbonate originate from carbonate-calcium crystal component of the human urinary calculus?].
    Yuzawa M; Nakano K; Kumamaru T; Nukui A; Ikeda H; Suzuki K; Kobayashi M; Sugaya Y; Morita T
    Nihon Hinyokika Gakkai Zasshi; 2008 Sep; 99(6):681-7. PubMed ID: 18939450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of urinary calculi by infrared spectroscopy.
    Lee YH; Chen MT; Huang JK; Chang LS
    Zhonghua Yi Xue Za Zhi (Taipei); 1990 Mar; 45(3):157-65. PubMed ID: 2168259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Fourier transform infrared analysis of urinary stones: technical aspects and example of procedures applied to carbapatite/weddellite mixtures.
    Cohen-Solal F; Dabrowsky B; Boulou JC; Lacour B; Daudon M
    Appl Spectrosc; 2004 Jun; 58(6):671-8. PubMed ID: 15198818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a method for the quantitative analysis of urinary stones, formed by a mixture of two components, using infrared spectroscopy.
    García Alvarez JL; Torrejón Martínez MJ; Arroyo Fernández M
    Clin Biochem; 2012 May; 45(7-8):582-7. PubMed ID: 22374172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes.
    Mandel N; Mandel I; Fryjoff K; Rejniak T; Mandel G
    J Urol; 2003 Jun; 169(6):2026-9. PubMed ID: 12771710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralogical notes of apatite in urinary calculi.
    Konjiki T; Sudo T; Kohyama N
    Calcif Tissue Int; 1980; 30(2):101-7. PubMed ID: 6769558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared spectroscopic analysis of urinary stones (including stones induced by melamine-contaminated milk powder) in 189 Chinese children.
    Sun X; Shen L; Cong X; Zhu H; Lv J; He L
    J Pediatr Surg; 2011 Apr; 46(4):723-728. PubMed ID: 21496544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of low-dose dual energy computed tomography for in vivo assessment of renal/ureteric calculus composition.
    Mahalingam H; Lal A; Mandal AK; Singh SK; Bhattacharyya S; Khandelwal N
    Korean J Urol; 2015 Aug; 56(8):587-93. PubMed ID: 26279828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FT-IR spectral studies on certain human urinary stones in the patients of rural area.
    Selvaraju R; Thiruppathi G; Raja A
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():260-5. PubMed ID: 22484261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition, microstructure and element study of urinary calculi.
    Zhang M; Zhang X; Zhang B; Wang D
    Microsc Res Tech; 2016 Nov; 79(11):1038-1044. PubMed ID: 27492889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry.
    Maurice-Estepa L; Levillain P; Lacour B; Daudon M
    Clin Chim Acta; 2000 Aug; 298(1-2):1-11. PubMed ID: 10876000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Composition of 359 kidney stones from the East region of Algeria].
    Bouslama S; Boutefnouchet A; Hannache B; Djemil T; Kadi A; Dahdouh A; Saka S; Daudon M
    Prog Urol; 2016 Jan; 26(1):41-9. PubMed ID: 26531134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone metaplasia of urothelial mucosa: an unusual biological phenomenon causing kidney stones.
    Fernandez-Conde M; Serrano S; Alcover J; Aaron JE
    Bone; 1996 Mar; 18(3):289-91. PubMed ID: 8703586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and composition of canine urinary calculi.
    Escolar E; Bellanato J; Medina JA
    Res Vet Sci; 1990 Nov; 49(3):327-33. PubMed ID: 2176338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.