BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8504633)

  • 1. What is the blood flow to resting human muscle?
    Elia M; Kurpad A
    Clin Sci (Lond); 1993 May; 84(5):559-63. PubMed ID: 8504633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load.
    Bülow J; Astrup A; Christensen NJ; Kastrup J
    Acta Physiol Scand; 1987 Aug; 130(4):657-61. PubMed ID: 3307305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total forearm blood flow as an indicator of skeletal muscle blood flow: effect of subcutaneous adipose tissue blood flow.
    Blaak EE; van Baak MA; Kemerink GJ; Pakbiers MT; Heidendal GA; Saris WH
    Clin Sci (Lond); 1994 Nov; 87(5):559-66. PubMed ID: 7874845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the forearm and calf blood flow response to thermal stress during dynamic exercise.
    Nishiyasu T; Shi X; Gillen CM; Mack GW; Nadel ER
    Med Sci Sports Exerc; 1992 Feb; 24(2):213-7. PubMed ID: 1549010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Calf blood flow at rest evaluated by thermal measurement with tissue temperature and heat flow and 133Xe clearance (author's transl)].
    Tamura T; Togawa T; Fukuoka M; Kawakami K
    Nihon Seirigaku Zasshi; 1982 Jan; 44(1):13-20. PubMed ID: 7069634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential control of forearm and calf vascular resistance during one-leg exercise.
    Taylor JA; Joyner MJ; Chase PB; Seals DR
    J Appl Physiol (1985); 1989 Nov; 67(5):1791-800. PubMed ID: 2600013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral blood flow of forearm in normal subjects evaluated by plethysmography and 133Xe clearance at rest and during hyperaemia.
    Lehtovirta P; Rekonen A
    Ann Clin Res; 1974 Aug; 6(4):234-40. PubMed ID: 4429335
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of physiological hyperinsulinemia on blood flow and interstitial glucose concentration in human skeletal muscle and adipose tissue studied by microdialysis.
    Rosdahl H; Lind L; Millgård J; Lithell H; Ungerstedt U; Henriksson J
    Diabetes; 1998 Aug; 47(8):1296-301. PubMed ID: 9703331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of skin and muscle resistance vessels in reflexes mediated by the baroreceptor system.
    Beiser GD; Zelis R; Epstein SE; Mason DT; Braunwald E
    J Clin Invest; 1970 Feb; 49(2):225-31. PubMed ID: 5411781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of regional lower limb blood flow in normal humans by inhalation of 133Xe.
    Adiseshiah M; Barber RW; Szaz KF
    Eur J Nucl Med; 1984; 9(8):379-81. PubMed ID: 6489370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment.
    Tobin L; Simonsen L; Bülow J
    Clin Physiol Funct Imaging; 2010 Nov; 30(6):447-52. PubMed ID: 20731685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodological aspects, dose-response characteristics and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects.
    Utriainen T; Malmström R; Mäkimattila S; Yki-Järvinen H
    Diabetologia; 1995 May; 38(5):555-64. PubMed ID: 7489838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow through the calf during recovery from fractures of the lower limb.
    Imms FJ; Lorde DA; Prestidge SP; Thornton C
    Clin Sci Mol Med; 1976 Sep; 51(3):297-302. PubMed ID: 963959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of externally applied compression on blood flow in subcutaneous and muscle tissue in the human supine leg.
    Nielsen HV
    Clin Physiol; 1982 Dec; 2(6):447-57. PubMed ID: 6891301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in human forearm blood flow after intravenous regional sympathetic blockade with guanethidine.
    Thomsen MB; Bengtsson M; Lassvik C; Lewis DH; Elfström J
    Acta Chir Scand; 1982; 148(8):657-61. PubMed ID: 7170901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of mean body and local skin temperatures in the modulation of human forearm and calf blood flows: a three-dimensional description.
    Caldwell JN; Matsuda-Nakamura M; Taylor NA
    Eur J Appl Physiol; 2016 Feb; 116(2):343-52. PubMed ID: 26526291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared spectroscopy provides an index of blood flow and vasoconstriction in calf skeletal muscle during lower body negative pressure.
    Hachiya T; Blaber AP; Saito M
    Acta Physiol (Oxf); 2008 Jun; 193(2):117-27. PubMed ID: 18162057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive, quantitative determination of muscle blood flow in man by a combination of venous-occlusion plethysmography and computed tomography.
    Weber F; Anlauf M; Serdarevic M
    Basic Res Cardiol; 1988; 83(3):327-41. PubMed ID: 3415636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heat stress on muscle blood flow during dynamic handgrip exercise.
    Smolander J; Louhevaara V
    Eur J Appl Physiol Occup Physiol; 1992; 65(3):215-20. PubMed ID: 1396649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forearm skin and muscle vascular responses to prolonged leg exercise in man.
    Johnson JM; Rowell LB
    J Appl Physiol; 1975 Dec; 39(6):920-4. PubMed ID: 1213973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.