These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8505983)

  • 41. Imaginal discs can be recovered from cultured embryos mutant for the segment-polarity genes engrailed, naked and patched but not from wingless.
    Simcox AA; Roberts IJ; Hersperger E; Gribbin MC; Shearn A; Whittle JR
    Development; 1989 Dec; 107(4):715-22. PubMed ID: 23862219
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction.
    Reichsman F; Smith L; Cumberledge S
    J Cell Biol; 1996 Nov; 135(3):819-27. PubMed ID: 8909553
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the expression pattern of Mysidium columbiae wingless provides evidence for conserved mesodermal and retinal patterning processes among insects and crustaceans.
    Duman-Scheel M; Pirkl N; Patel NH
    Dev Genes Evol; 2002 Apr; 212(3):114-23. PubMed ID: 11976949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conservation of the expression of Dll, en, and wg in the eye-antennal imaginal disc of stalk-eyed flies.
    Hurley I; Fowler K; Pomiankowski A; Smith H
    Evol Dev; 2001; 3(6):408-14. PubMed ID: 11806636
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decapentaplegic restricts the domain of wingless during Drosophila limb patterning.
    Penton A; Hoffmann FM
    Nature; 1996 Jul; 382(6587):162-4. PubMed ID: 8700205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The making of a maggot: patterning the Drosophila embryonic epidermis.
    DiNardo S; Heemskerk J; Dougan S; O'Farrell PH
    Curr Opin Genet Dev; 1994 Aug; 4(4):529-34. PubMed ID: 7950320
    [TBL] [Abstract][Full Text] [Related]  

  • 47. decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression.
    Morimura S; Maves L; Chen Y; Hoffmann FM
    Dev Biol; 1996 Jul; 177(1):136-51. PubMed ID: 8660883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The patched signaling pathway mediates repression of gooseberry allowing neuroblast specification by wingless during Drosophila neurogenesis.
    Bhat KM
    Development; 1996 Sep; 122(9):2921-32. PubMed ID: 8787765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing.
    Kadowaki T; Wilder E; Klingensmith J; Zachary K; Perrimon N
    Genes Dev; 1996 Dec; 10(24):3116-28. PubMed ID: 8985181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Segment boundary formation in Drosophila embryos.
    Larsen CW; Hirst E; Alexandre C; Vincent JP
    Development; 2003 Dec; 130(23):5625-35. PubMed ID: 14522878
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis.
    Kaphingst K; Kunes S
    Cell; 1994 Aug; 78(3):437-48. PubMed ID: 8062386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Directionality of wingless protein transport influences epidermal patterning in the Drosophila embryo.
    Moline MM; Southern C; Bejsovec A
    Development; 1999 Oct; 126(19):4375-84. PubMed ID: 10477304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sternopleural is a regulatory mutation of wingless with both dominant and recessive effects on larval development of Drosophila melanogaster.
    Neumann CJ; Cohen SM
    Genetics; 1996 Apr; 142(4):1147-55. PubMed ID: 8846894
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation.
    Packard M; Koo ES; Gorczyca M; Sharpe J; Cumberledge S; Budnik V
    Cell; 2002 Nov; 111(3):319-30. PubMed ID: 12419243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Myoblast diversification and ectodermal signaling in Drosophila.
    Sudarsan V; Anant S; Guptan P; VijayRaghavan K; Skaer H
    Dev Cell; 2001 Dec; 1(6):829-39. PubMed ID: 11740944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate.
    Siegfried E; Chou TB; Perrimon N
    Cell; 1992 Dec; 71(7):1167-79. PubMed ID: 1335365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactions of Wnt-1 and Wnt-3a are essential for neural tube patterning.
    Augustine KA; Liu ET; Sadler TW
    Teratology; 1995 Feb; 51(2):107-19. PubMed ID: 7660319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. naked cuticle encodes an inducible antagonist of Wnt signalling.
    Zeng W; Wharton KA; Mack JA; Wang K; Gadbaw M; Suyama K; Klein PS; Scott MP
    Nature; 2000 Feb; 403(6771):789-95. PubMed ID: 10693810
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wingless activity in the precursor cells specifies neuronal migratory behavior in the Drosophila nerve cord.
    Bhat KM
    Dev Biol; 2007 Nov; 311(2):613-22. PubMed ID: 17936746
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless.
    Rijsewijk F; Schuermann M; Wagenaar E; Parren P; Weigel D; Nusse R
    Cell; 1987 Aug; 50(4):649-57. PubMed ID: 3111720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.