These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8506261)

  • 1. A new substitution matrix for protein sequence searches based on contact frequencies in protein structures.
    Miyazawa S; Jernigan RL
    Protein Eng; 1993 Apr; 6(3):267-78. PubMed ID: 8506261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix.
    Ndhlovu A; Hazelhurst S; Durand PM
    BMC Bioinformatics; 2015 Aug; 16():255. PubMed ID: 26269100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein stability for single substitution mutants and the extent of local compactness in the denatured state.
    Miyazawa S; Jernigan RL
    Protein Eng; 1994 Oct; 7(10):1209-20. PubMed ID: 7855136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indications that "codon boundaries" are physico-chemically defined and that protein-folding information is contained in the redundant exon bases.
    Biro JC
    Theor Biol Med Model; 2006 Aug; 3():28. PubMed ID: 16893453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection originating from protein stability/foldability: Relationships between protein folding free energy, sequence ensemble, and fitness.
    Miyazawa S
    J Theor Biol; 2017 Nov; 433():21-38. PubMed ID: 28844906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum-Likelihood Phylogenetic Inference with Selection on Protein Folding Stability.
    Arenas M; Sánchez-Cobos A; Bastolla U
    Mol Biol Evol; 2015 Aug; 32(8):2195-207. PubMed ID: 25837579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An estimate on the effect of point mutation and natural selection on the rate of amino acid replacement in proteins.
    Frömmel C; Holzhütter HG
    J Mol Evol; 1984-1985; 21(3):233-57. PubMed ID: 6443130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An empirical energy potential with a reference state for protein fold and sequence recognition.
    Miyazawa S; Jernigan RL
    Proteins; 1999 Aug; 36(3):357-69. PubMed ID: 10409829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein sequence-structure alignment based on site-alignment probabilities.
    Miyazawa S
    Genome Inform Ser Workshop Genome Inform; 2000; 11():141-50. PubMed ID: 11700595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
    Terashi G; Takeda-Shitaka M
    PLoS One; 2015; 10(10):e0141440. PubMed ID: 26502070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An assessment of amino acid exchange matrices in aligning protein sequences: the twilight zone revisited.
    Vogt G; Etzold T; Argos P
    J Mol Biol; 1995 Jun; 249(4):816-31. PubMed ID: 7602593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent accessibility, residue charge and residue volume, the three ingredients of a robust amino acid substitution matrix.
    Goodarzi H; Katanforoush A; Torabi N; Najafabadi HS
    J Theor Biol; 2007 Apr; 245(4):715-25. PubMed ID: 17240399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Untangling the effects of codon mutation and amino acid exchangeability.
    Yampolsky LY; Stoltzfus A
    Pac Symp Biocomput; 2005; ():433-44. PubMed ID: 15759648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHAT: a transmembrane-specific substitution matrix. Predicted hydrophobic and transmembrane.
    Ng PC; Henikoff JG; Henikoff S
    Bioinformatics; 2000 Sep; 16(9):760-6. PubMed ID: 11108698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical codon substitution matrix.
    Schneider A; Cannarozzi GM; Gonnet GH
    BMC Bioinformatics; 2005 Jun; 6():134. PubMed ID: 15927081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein database searches using compositionally adjusted substitution matrices.
    Altschul SF; Wootton JC; Gertz EM; Agarwala R; Morgulis A; Schäffer AA; Yu YK
    FEBS J; 2005 Oct; 272(20):5101-9. PubMed ID: 16218944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threading using neural nEtwork (TUNE): the measure of protein sequence-structure compatibility.
    Lin K; May AC; Taylor WR
    Bioinformatics; 2002 Oct; 18(10):1350-7. PubMed ID: 12376379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.