These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8506263)

  • 1. Can the stability of protein mutants be predicted by free energy calculations?
    Shi YY; Mark AE; Wang CX; Huang F; Berendsen HJ; van Gunsteren WF
    Protein Eng; 1993 Apr; 6(3):289-95. PubMed ID: 8506263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy perturbation techniques applied to subtilisin BPN' stability.
    Barnett BL; Turner CB
    Adv Exp Med Biol; 1996; 379():121-31. PubMed ID: 8796316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced stability of subtilisin by three point mutations.
    Narhi LO; Stabinsky Y; Levitt M; Miller L; Sachdev R; Finley S; Park S; Kolvenbach C; Arakawa T; Zukowski M
    Biotechnol Appl Biochem; 1991 Feb; 13(1):12-24. PubMed ID: 2054102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the structure and function of subtilisin E by protein engineering.
    Takagi H; Matsuzawa H; Ohta T; Yamasaki M; Inouye M
    Adv Exp Med Biol; 1996; 379():269-75. PubMed ID: 8796331
    [No Abstract]   [Full Text] [Related]  

  • 5. Free energy perturbation calculations on binding and catalysis after mutating Asn 155 in subtilisin.
    Rao SN; Singh UC; Bash PA; Kollman PA
    Nature; 1987 Aug 6-12; 328(6130):551-4. PubMed ID: 3302725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic integration calculations of binding free energy difference for Gly-169 mutation in subtilisin BPN'.
    Wang CX; Shi YY; Zhou F; Wang L
    Proteins; 1993 Jan; 15(1):5-9. PubMed ID: 8451240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn of subtilisin Carlsberg increase the catalytic rate and decrease thermostability.
    Fuchita N; Arita S; Ikuta J; Miura M; Shimomura K; Motoshima H; Watanabe K
    Biochim Biophys Acta; 2012 Apr; 1824(4):620-6. PubMed ID: 22326746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced thermostability of the single-Cys mutant subtilisin E under oxidizing conditions.
    Takagi H; Hirai K; Wada M; Nakamori S
    J Biochem; 2000 Oct; 128(4):585-9. PubMed ID: 11011140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting proteinase specificities from free energy calculations.
    Mekonnen SM; Olufsen M; Smalås AO; Brandsdal BO
    J Mol Graph Model; 2006 Oct; 25(2):176-85. PubMed ID: 16386933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilizing the subtilisin BPN' pro-domain by phage display selection: how restrictive is the amino acid code for maximum protein stability?
    Ruan B; Hoskins J; Wang L; Bryan PN
    Protein Sci; 1998 Nov; 7(11):2345-53. PubMed ID: 9828000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics-driven, rational engineering of protein thermostability.
    Ditursi MK; Kwon SJ; Reeder PJ; Dordick JS
    Protein Eng Des Sel; 2006 Nov; 19(11):517-24. PubMed ID: 17003065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of thermal stability of subtilisin J by changing the primary autolysis site.
    Bae KH; Jang JS; Park KS; Lee SH; Byun SM
    Biochem Biophys Res Commun; 1995 Feb; 207(1):20-4. PubMed ID: 7857265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure analysis of subtilisin BPN' mutants engineered for studying thermal stability.
    Gilliland GL; Gallagher DT; Alexander P; Bryan P
    Adv Exp Med Biol; 1996; 379():159-69. PubMed ID: 8796321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated prediction of the effect of mutations on multiple protein characteristics.
    Johnston MA; Søndergaard CR; Nielsen JE
    Proteins; 2011 Jan; 79(1):165-78. PubMed ID: 21058401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase.
    Sigurdardóttir AG; Arnórsdóttir J; Thorbjarnardóttir SH; Eggertsson G; Suhre K; Kristjánsson MM
    Biochim Biophys Acta; 2009 Mar; 1794(3):512-8. PubMed ID: 19100869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of engineered salt bridges on the stability of subtilisin BPN'.
    Erwin CR; Barnett BL; Oliver JD; Sullivan JF
    Protein Eng; 1990 Oct; 4(1):87-97. PubMed ID: 2127106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
    Ruan B; Hoskins J; Bryan PN
    Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the weak Ca(2+)-binding site of subtilisin J by site-directed mutagenesis on heat stability.
    Jang JS; Bae KH; Byun SM
    Biochem Biophys Res Commun; 1992 Oct; 188(1):184-9. PubMed ID: 1358066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.