BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8506266)

  • 1. Structure and functional complementation of engineered fragments from yeast phosphoglycerate kinase.
    Pecorari F; Minard P; Desmadril M; Yon JM
    Protein Eng; 1993 Apr; 6(3):313-25. PubMed ID: 8506266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding and functional complementation of engineered fragments from yeast phosphoglycerate kinase.
    Pecorari F; Guilbert C; Minard P; Desmadril M; Yon JM
    Biochemistry; 1996 Mar; 35(11):3465-76. PubMed ID: 8639497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding-refolding of the domains in yeast phosphoglycerate kinase: comparison with the isolated engineered domains.
    Missiakas D; Betton JM; Minard P; Yon JM
    Biochemistry; 1990 Sep; 29(37):8683-9. PubMed ID: 2271549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an intermediate in the folding pathway of phosphoglycerate kinase: chemical reactivity of genetically introduced cysteinyl residues during the folding process.
    Ballery N; Desmadril M; Minard P; Yon JM
    Biochemistry; 1993 Jan; 32(2):708-14. PubMed ID: 8422377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the C-terminal helix in the folding and stability of yeast phosphoglycerate kinase.
    Ritco-Vonsovici M; Mouratou B; Minard P; Desmadril M; Yon JM; Andrieux M; Leroy E; Guittet E
    Biochemistry; 1995 Jan; 34(3):833-41. PubMed ID: 7827042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional properties of mutant Arg203Pro from yeast phosphoglycerate kinase, as a model of phosphoglycerate kinase-Uppsala.
    Tougard P; Le TH; Minard P; Desmadril M; Yon JM; Bizebard T; Lebras G; Dumas C
    Protein Eng; 1996 Feb; 9(2):181-7. PubMed ID: 9005439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the continuity of the domains required for the correct folding of a two-domain protein?
    Ritco-Vonsovici M; Minard P; Desmadril M; Yon JM
    Biochemistry; 1995 Dec; 34(51):16543-51. PubMed ID: 8527427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic study of phosphoglycerate kinase from Thermotoga maritima and its isolated domains: reversible thermal unfolding monitored by differential scanning calorimetry and circular dichroism spectroscopy.
    Zaiss K; Jaenicke R
    Biochemistry; 1999 Apr; 38(14):4633-9. PubMed ID: 10194385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains.
    Missiakas D; Betton JM; Chaffotte A; Minard P; Yon JM
    Protein Sci; 1992 Nov; 1(11):1485-93. PubMed ID: 1303767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The slow-refolding step of phosphoglycerate kinase as monitored by pulse proteolysis.
    Betton JM; Missiakas D; Yon JM
    Arch Biochem Biophys; 1992 Jul; 296(1):95-101. PubMed ID: 1605649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of transient multimeric species during the refolding of a monomeric protein.
    Pecorari F; Minard P; Desmadril M; Yon JM
    J Biol Chem; 1996 Mar; 271(9):5270-6. PubMed ID: 8617813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between conformational stability of the ternary enzyme-substrate complex and domain closure of 3-phosphoglycerate kinase.
    Varga A; Flachner B; Gráczer E; Osváth S; Szilágyi AN; Vas M
    FEBS J; 2005 Apr; 272(8):1867-85. PubMed ID: 15819882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incomplete refolding of a fragment of the N-terminal domain of pig muscle 3-phosphoglycerate kinase that lacks a subdomain. Comparison with refolding of the complementary C-terminal fragment.
    Szilágyi AN; Kotova NV; Semisotnov GV; Vas M
    Eur J Biochem; 2001 Mar; 268(6):1851-60. PubMed ID: 11248706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility and folding of phosphoglycerate kinase.
    Yon JM; Desmadril M; Betton JM; Minard P; Ballery N; Missiakas D; Gaillard-Miran S; Perahia D; Mouawad L
    Biochimie; 1990; 72(6-7):417-29. PubMed ID: 2124145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing intradomain and interdomain conformational changes during equilibrium unfolding of phosphoglycerate kinase: fluorescence and circular dichroism study of tryptophan mutants.
    Sherman MA; Beechem JM; Mas MT
    Biochemistry; 1995 Oct; 34(42):13934-42. PubMed ID: 7577989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability.
    Young TA; Skordalakes E; Marqusee S
    J Mol Biol; 2007 May; 368(5):1438-47. PubMed ID: 17397866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase.
    McHarg J; Kelly SM; Price NC; Cooper A; Littlechild JA
    Eur J Biochem; 1999 Feb; 259(3):939-45. PubMed ID: 10092885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain behavior during the folding of a thermostable phosphoglycerate kinase.
    Parker MJ; Spencer J; Jackson GS; Burston SG; Hosszu LL; Craven CJ; Waltho JP; Clarke AR
    Biochemistry; 1996 Dec; 35(49):15740-52. PubMed ID: 8961937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase.
    Osváth S; Köhler G; Závodszky P; Fidy J
    Protein Sci; 2005 Jun; 14(6):1609-16. PubMed ID: 15883189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of loops in the folding and stability of yeast phosphoglycerate kinase.
    Collinet B; Garcia P; Minard P; Desmadril M
    Eur J Biochem; 2001 Oct; 268(19):5107-18. PubMed ID: 11589702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.