These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 8506345)
21. Leucine aminopeptidase (bovine lens). The relative binding of cobalt and zinc to leucine aminopeptidase and the effect of cobalt substitution on specific activity. Thompson GA; Carpenter FH J Biol Chem; 1976 Mar; 251(6):1618-24. PubMed ID: 1254587 [TBL] [Abstract][Full Text] [Related]
22. Structure and mechanism of bovine lens leucine aminopeptidase. Kim H; Lipscomb WN Adv Enzymol Relat Areas Mol Biol; 1994; 68():153-213. PubMed ID: 8154324 [No Abstract] [Full Text] [Related]
23. Development of a working model of the active site in bovine lens leucine aminopeptidase: a density functional investigation. Erhardt S; Weston J Chembiochem; 2002 Jan; 3(1):101-4. PubMed ID: 17590960 [No Abstract] [Full Text] [Related]
24. Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase. Zhang Y; Liang JY; Huang S; Ke H; Lipscomb WN Biochemistry; 1993 Feb; 32(7):1844-57. PubMed ID: 8382525 [TBL] [Abstract][Full Text] [Related]
25. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution. Wedekind JE; Poyner RR; Reed GH; Rayment I Biochemistry; 1994 Aug; 33(31):9333-42. PubMed ID: 8049235 [TBL] [Abstract][Full Text] [Related]
26. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution. Larsen TM; Wedekind JE; Rayment I; Reed GH Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183 [TBL] [Abstract][Full Text] [Related]
27. Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. Bukrinsky JT; Bjerrum MJ; Kadziola A Biochemistry; 1998 Nov; 37(47):16555-64. PubMed ID: 9843422 [TBL] [Abstract][Full Text] [Related]
28. Structural aspects of the inhibitor complex formed by N-(leucyl)-o-aminobenzenesulfonate and manganese with Zn2+-Mn2+ leucine aminopeptidase (EC 3.4.11.1). Studies by NMR. Taylor A; Sawan S; James TL J Biol Chem; 1982 Oct; 257(19):11571-6. PubMed ID: 7118898 [No Abstract] [Full Text] [Related]
29. Zinc binding in bovine alpha-lactalbumin: sequence homology may not be a predictor of subtle functional features. Permyakov SE; Veprintsev DB; Brooks CL; Permyakov EA; Berliner LJ Proteins; 2000 Jul; 40(1):106-11. PubMed ID: 10813835 [TBL] [Abstract][Full Text] [Related]
30. Biochemical characterization and structural prediction of a novel cytosolic leucyl aminopeptidase of the M17 family from Schizosaccharomyces pombe. Herrera-Camacho I; Rosas-Murrieta NH; Rojo-Domínguez A; Millán L; Reyes-Leyva J; Santos-López G; Suárez-Rendueles P FEBS J; 2007 Dec; 274(23):6228-40. PubMed ID: 18028193 [TBL] [Abstract][Full Text] [Related]
31. Leucine aminopeptidase from bovine lens and hog kidney. Comparison using immunological techniques, electron microscopy, and X-ray diffraction. Taylor A; Volz KW; Lipscomb WN; Takemoto LJ J Biol Chem; 1984 Dec; 259(23):14757-61. PubMed ID: 6209279 [TBL] [Abstract][Full Text] [Related]
32. Thermodynamics of binding of calcium, magnesium, and zinc to the N-methyl-D-aspartate receptor ion channel peptidic inhibitors, conantokin-G and conantokin-T. Prorok M; Castellino FJ J Biol Chem; 1998 Jul; 273(31):19573-8. PubMed ID: 9677382 [TBL] [Abstract][Full Text] [Related]
33. Bovine lens leucine aminopeptidase. A study of possible roles for the thiol groups in holo- and apoenzyme. Frohne M; Kettmann U Acta Biol Med Ger; 1976; 35(3-4):353-7. PubMed ID: 970044 [TBL] [Abstract][Full Text] [Related]
35. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors. Maric S; Donnelly SM; Robinson MW; Skinner-Adams T; Trenholme KR; Gardiner DL; Dalton JP; Stack CM; Lowther J Biochemistry; 2009 Jun; 48(23):5435-9. PubMed ID: 19408962 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Chevrier B; Schalk C; D'Orchymont H; Rondeau JM; Moras D; Tarnus C Structure; 1994 Apr; 2(4):283-91. PubMed ID: 8087555 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: a DFT approach. Zhu X; Barman A; Ozbil M; Zhang T; Li S; Prabhakar R J Biol Inorg Chem; 2012 Feb; 17(2):209-22. PubMed ID: 21918843 [TBL] [Abstract][Full Text] [Related]
38. Leucine aminopeptidase (Bovine lens). Mechanism of activation by Mg 2+ and Mn 2+ of the zinc metalloenzyme, amino acid composition, and sulfhydryl content. Carpenter FH; Vahl JM J Biol Chem; 1973 Jan; 248(1):294-304. PubMed ID: 4692835 [No Abstract] [Full Text] [Related]
39. Binding structure of the leucine aminopeptidase inhibitor microginin FR1. Kraft M; Schleberger C; Weckesser J; Schulz GE FEBS Lett; 2006 Dec; 580(30):6943-7. PubMed ID: 17157838 [TBL] [Abstract][Full Text] [Related]
40. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]